Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):614–628. doi: 10.1016/S0006-3495(00)76320-X

Elbow flexibility and ligand-induced domain rearrangements in antibody Fab NC6.8: large effects of a small hapten.

C A Sotriffer 1, B M Rode 1, J M Varga 1, K R Liedl 1
PMCID: PMC1300962  PMID: 10919996

Abstract

Four 700-ps molecular dynamics simulations were carried out to analyze the structural dynamics of the antigen-binding antibody fragment NC6.8, which is known to exhibit large structural changes upon complexation. The first simulation was started from the x-ray structure of the uncomplexed Fab and produced trajectory averages that closely match the crystallographic results. It allowed assessment of the flexibility of the Fab, revealing an elbow motion of the variable domains with respect to the constant domains. The second simulation was started from the uncomplexed x-ray structure after insertion of the ligand into the binding site. This perturbation resulted in a significantly altered trajectory, with quaternary structural changes corresponding in many aspects to the experimental differences between complexed and uncomplexed state. The observed trend toward a smaller elbow angle and a higher flexion of the H-chain could also be seen in the third simulation, which was started from the x-ray structure of the complex. The changes were revealed to be a clear consequence of the complexation with the ligand because in the fourth simulation (started from the experimental complex structure after removal of the hapten) the Fab remained close to its initial structure. Analyses of the quaternary structure and the binding site of Fab NC6.8 are presented for all four simulations, and possible interpretations are discussed.

Full Text

The Full Text of this article is available as a PDF (319.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold G. E., Ornstein R. L. Molecular dynamics study of time-correlated protein domain motions and molecular flexibility: cytochrome P450BM-3. Biophys J. 1997 Sep;73(3):1147–1159. doi: 10.1016/S0006-3495(97)78147-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brekke O. H., Michaelsen T. E., Sandlie I. The structural requirements for complement activation by IgG: does it hinge on the hinge? Immunol Today. 1995 Feb;16(2):85–90. doi: 10.1016/0167-5699(95)80094-8. [DOI] [PubMed] [Google Scholar]
  3. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  4. Guddat L. W., Shan L., Anchin J. M., Linthicum D. S., Edmundson A. B. Local and transmitted conformational changes on complexation of an anti-sweetener Fab. J Mol Biol. 1994 Feb 11;236(1):247–274. doi: 10.1006/jmbi.1994.1133. [DOI] [PubMed] [Google Scholar]
  5. Guddat L. W., Shan L., Fan Z. C., Andersen K. N., Rosauer R., Linthicum D. S., Edmundson A. B. Intramolecular signaling upon complexation. FASEB J. 1995 Jan;9(1):101–106. doi: 10.1096/fasebj.9.1.7821748. [DOI] [PubMed] [Google Scholar]
  6. Harris L. J., Larson S. B., Hasel K. W., McPherson A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry. 1997 Feb 18;36(7):1581–1597. doi: 10.1021/bi962514+. [DOI] [PubMed] [Google Scholar]
  7. Harris L. J., Larson S. B., Skaletsky E., McPherson A. Comparison of the conformations of two intact monoclonal antibodies with hinges. Immunol Rev. 1998 Jun;163:35–43. doi: 10.1111/j.1600-065x.1998.tb01186.x. [DOI] [PubMed] [Google Scholar]
  8. Harris L. J., Skaletsky E., McPherson A. Crystallographic structure of an intact IgG1 monoclonal antibody. J Mol Biol. 1998 Feb 6;275(5):861–872. doi: 10.1006/jmbi.1997.1508. [DOI] [PubMed] [Google Scholar]
  9. Hünenberger P. H., McCammon J. A. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem. 1999 Apr 5;78(1-2):69–88. doi: 10.1016/s0301-4622(99)00007-1. [DOI] [PubMed] [Google Scholar]
  10. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  11. Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
  12. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  13. Lim K., Herron J. N. Molecular dynamics of the anti-fluorescein 4-4-20 antigen-binding fragment. 1. Computer simulations. Biochemistry. 1995 May 30;34(21):6962–6974. doi: 10.1021/bi00021a008. [DOI] [PubMed] [Google Scholar]
  14. Nezlin R. Internal movements in immunoglobulin molecules. Adv Immunol. 1990;48:1–40. doi: 10.1016/s0065-2776(08)60750-6. [DOI] [PubMed] [Google Scholar]
  15. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  16. Padlan E. A. X-ray crystallography of antibodies. Adv Protein Chem. 1996;49:57–133. doi: 10.1016/s0065-3233(08)60488-x. [DOI] [PubMed] [Google Scholar]
  17. Petsko G. A. Not just your average structures. Nat Struct Biol. 1996 Jul;3(7):565–566. doi: 10.1038/nsb0796-565. [DOI] [PubMed] [Google Scholar]
  18. Prasad L., Vandonselaar M., Lee J. S., Delbaere L. T. Structure determination of a monoclonal Fab fragment specific for histidine-containing protein of the phosphoenolpyruvate: sugar phosphotransferase system of Escherichia coli. J Biol Chem. 1988 Feb 15;263(5):2571–2574. [PubMed] [Google Scholar]
  19. Rini J. M., Schulze-Gahmen U., Wilson I. A. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science. 1992 Feb 21;255(5047):959–965. doi: 10.1126/science.1546293. [DOI] [PubMed] [Google Scholar]
  20. Rini J. M., Stanfield R. L., Stura E. A., Salinas P. A., Profy A. T., Wilson I. A. Crystal structure of a human immunodeficiency virus type 1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6325–6329. doi: 10.1073/pnas.90.13.6325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Satow Y., Cohen G. H., Padlan E. A., Davies D. R. Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. J Mol Biol. 1986 Aug 20;190(4):593–604. doi: 10.1016/0022-2836(86)90245-7. [DOI] [PubMed] [Google Scholar]
  22. Schreiber H., Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry. 1992 Jun 30;31(25):5856–5860. doi: 10.1021/bi00140a022. [DOI] [PubMed] [Google Scholar]
  23. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sotriffer C. A., Liedl K. R., Linthicum D. S., Rode B. M., Varga J. M. Ligand-induced domain movement in an antibody Fab: molecular dynamics studies confirm the unique domain movement observed experimentally for Fab NC6.8 upon complexation and reveal its segmental flexibility. J Mol Biol. 1998 May 1;278(2):301–306. doi: 10.1006/jmbi.1998.1684. [DOI] [PubMed] [Google Scholar]
  25. Stanfield R. L., Takimoto-Kamimura M., Rini J. M., Profy A. T., Wilson I. A. Major antigen-induced domain rearrangements in an antibody. Structure. 1993 Oct 15;1(2):83–93. doi: 10.1016/0969-2126(93)90024-b. [DOI] [PubMed] [Google Scholar]
  26. Tanner J. J., Nell L. J., McCammon J. A. Anti-insulin antibody structure and conformation. II. Molecular dynamics with explicit solvent. Biopolymers. 1992 Jan;32(1):23–32. doi: 10.1002/bip.360320105. [DOI] [PubMed] [Google Scholar]
  27. Tormo J., Blaas D., Parry N. R., Rowlands D., Stuart D., Fita I. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 1994 May 15;13(10):2247–2256. doi: 10.1002/j.1460-2075.1994.tb06506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson I. A., Stanfield R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr Opin Struct Biol. 1994 Dec;4(6):857–867. doi: 10.1016/0959-440x(94)90267-4. [DOI] [PubMed] [Google Scholar]
  29. de la Cruz X., Mark A. E., Tormo J., Fita I., van Gunsteren W. F. Investigation of shape variations in the antibody binding site by molecular dynamics computer simulation. J Mol Biol. 1994 Mar 4;236(4):1186–1195. doi: 10.1016/0022-2836(94)90020-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES