Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):686–693. doi: 10.1016/S0006-3495(00)76327-2

Bimolecular reaction simulation using Weighted Ensemble Brownian dynamics and the University of Houston Brownian Dynamics program.

A Rojnuckarin 1, D R Livesay 1, S Subramaniam 1
PMCID: PMC1300969  PMID: 10920003

Abstract

We discuss here the implementation of the Weighted Ensemble Brownian (WEB) dynamics algorithm of Huber and Kim in the University of Houston Brownian Dynamics (UHBD) suite of programs and its application to bimolecular association problems. WEB dynamics is a biased Brownian dynamics (BD) algorithm that is more efficient than the standard Northrup-Allison-McCammon (NAM) method in cases where reaction events are infrequent because of intervening free energy barriers. Test cases reported here include the Smoluchowski rate for association of spheres, the association of the enzyme copper-zinc superoxide dismutase with superoxide anion, and the binding of the superpotent sweetener N-(p-cyanophenyl)-N'-(diphenylmethyl)-guanidinium acetic acid to a monoclonal antibody fragment, NC6.8. Our results show that the WEB dynamics algorithm is a superior simulation method for enzyme-substrate reaction encounters with large free energy barriers.

Full Text

The Full Text of this article is available as a PDF (168.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison S. A., Bacquet R. J., McCammon J. A. Simulation of the diffusion-controlled reaction between superoxide and superoxide dismutase. II. Detailed models. Biopolymers. 1988 Feb;27(2):251–269. doi: 10.1002/bip.360270207. [DOI] [PubMed] [Google Scholar]
  2. Antosiewicz J., Gilson M. K., Lee I. H., McCammon J. A. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. Biophys J. 1995 Jan;68(1):62–68. doi: 10.1016/S0006-3495(95)80159-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antosiewicz J., McCammon J. A. Electrostatic and hydrodynamic orientational steering effects in enzyme-substrate association. Biophys J. 1995 Jul;69(1):57–65. doi: 10.1016/S0006-3495(95)79874-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis M. E., Madura J. D., Sines J., Luty B. A., Allison S. A., McCammon J. A. Diffusion-controlled enzymatic reactions. Methods Enzymol. 1991;202:473–497. doi: 10.1016/0076-6879(91)02024-4. [DOI] [PubMed] [Google Scholar]
  5. Fisher C. L., Cabelli D. E., Hallewell R. A., Beroza P., Lo T. P., Getzoff E. D., Tainer J. A. Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase. Proteins. 1997 Sep;29(1):103–112. doi: 10.1002/(sici)1097-0134(199709)29:1<103::aid-prot8>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  6. Gabdoulline R. R., Wade R. C. Simulation of the diffusional association of barnase and barstar. Biophys J. 1997 May;72(5):1917–1929. doi: 10.1016/S0006-3495(97)78838-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  8. Guddat L. W., Shan L., Anchin J. M., Linthicum D. S., Edmundson A. B. Local and transmitted conformational changes on complexation of an anti-sweetener Fab. J Mol Biol. 1994 Feb 11;236(1):247–274. doi: 10.1006/jmbi.1994.1133. [DOI] [PubMed] [Google Scholar]
  9. Hibbits K. A., Gill D. S., Willson R. C. Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. Biochemistry. 1994 Mar 29;33(12):3584–3590. doi: 10.1021/bi00178a015. [DOI] [PubMed] [Google Scholar]
  10. Holst M., Kozack R. E., Saied F., Subramaniam S. Protein electrostatics: rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson-Boltzmann equation. J Biomol Struct Dyn. 1994 Jun;11(6):1437–1445. doi: 10.1080/07391102.1994.10508078. [DOI] [PubMed] [Google Scholar]
  11. Holst M., Kozack R. E., Saied F., Subramaniam S. Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation. Proteins. 1994 Mar;18(3):231–245. doi: 10.1002/prot.340180304. [DOI] [PubMed] [Google Scholar]
  12. Huber G. A., Kim S. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J. 1996 Jan;70(1):97–110. doi: 10.1016/S0006-3495(96)79552-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozack R. E., Subramaniam S. Brownian dynamics simulations of molecular recognition in an antibody-antigen system. Protein Sci. 1993 Jun;2(6):915–926. doi: 10.1002/pro.5560020605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kozack R. E., d'Mello M. J., Subramaniam S. Computer modeling of electrostatic steering and orientational effects in antibody-antigen association. Biophys J. 1995 Mar;68(3):807–814. doi: 10.1016/S0006-3495(95)80257-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lepock J. R., Arnold L. D., Torrie B. H., Andrews B., Kruuv J. Structural analyses of various Cu2+, Zn2+-superoxide dismutases by differential scanning calorimetry and Raman spectroscopy. Arch Biochem Biophys. 1985 Aug 15;241(1):243–251. doi: 10.1016/0003-9861(85)90380-7. [DOI] [PubMed] [Google Scholar]
  16. Northrup S. H., Erickson H. P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3338–3342. doi: 10.1073/pnas.89.8.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Polticelli F., Falconi M., O'Neill P., Petruzelli R., Galtieri A., Lania A., Calabrese L., Rotilio G., Desideri A. Molecular modeling and electrostatic potential calculations on chemically modified Cu,Zn superoxide dismutases from Bos taurus and shark Prionace glauca: role of Lys134 in electrostatically steering the substrate to the active site. Arch Biochem Biophys. 1994 Jul;312(1):22–30. doi: 10.1006/abbi.1994.1275. [DOI] [PubMed] [Google Scholar]
  18. Rojnuckarin A., Kim S., Subramaniam S. Brownian dynamics simulations of protein folding: access to milliseconds time scale and beyond. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4288–4292. doi: 10.1073/pnas.95.8.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sines J. J., Allison S. A., McCammon J. A. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases. Biochemistry. 1990 Oct 9;29(40):9403–9412. doi: 10.1021/bi00492a014. [DOI] [PubMed] [Google Scholar]
  20. Tainer J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982 Sep 15;160(2):181–217. doi: 10.1016/0022-2836(82)90174-7. [DOI] [PubMed] [Google Scholar]
  21. Wade R. C., Luty B. A., Demchuk E., Madura J. D., Davis M. E., Briggs J. M., McCammon J. A. Simulation of enzyme-substrate encounter with gated active sites. Nat Struct Biol. 1994 Jan;1(1):65–69. doi: 10.1038/nsb0194-65. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES