Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):720–730. doi: 10.1016/S0006-3495(00)76330-2

Magnetic phagosome motion in J774A.1 macrophages: influence of cytoskeletal drugs.

W Möller 1, I Nemoto 1, T Matsuzaki 1, T Hofer 1, J Heyder 1
PMCID: PMC1300972  PMID: 10920006

Abstract

The role of the different cytoskeletal structures like microfilaments (MF), microtubuli (MT), and intermediate filaments (IF) in phagosome motion is unclear. These cytoskeletal units play an important role in macrophage function (migration, phagocytosis, phagosome transport). We investigated ferromagnetic phagosome motions by cell magnetometry. J774A.1 macrophages were incubated with 1.3-microm spherical magnetite particles for 24 h, after which more than 90% of the particles had been phagocytized. Phagosome motions can be caused either by the cell itself (relaxation) or by applying magnetic twisting forces, yielding cell stiffness and viscoelastic properties of the cytoskeleton. Apparent viscosity of the cytoplasm was non-Newtonian and showed a shear-rate-dependent power law behavior. Elastically stored energy does not force the magnetic phagosomes back to their initial orientation: 57% of the twisting shear was not recoverable. Cytoskeletal drugs, like Cytochalasin D (CyD, 2 - 4 microM), Colchicine (CoL, 10 microM), or Acrylamide (AcL, 40 mM) were added in order to disturb the different cytoskeletal structures. AcL disintegrates IF, but affected neither stochastic (relaxation) nor directed phagosome motions. CyD disrupts MF, resulting in a retarded stochastic phagosome motion (relative decay 0.53 +/- 0.01 after 5 min versus 0.34 +/- 0.01 in control), whereas phagosome twisting shows only a small response with a 9% increase of stiffness and a small reduction of recoverable strain. CoL depolymerizes the MT, inducing a moderately accelerated relaxation (relative decay 0.28 +/- 0.01 after 5 min) and a 10% increase of cell stiffness, where the pure viscous shear is increased and the viscoelastic recoil is inhibited by 40%. Combining the two drugs conserves both effects. After disintegrating either MF or MT, phagosome motion and cytoskeletal stiffness reflect the behavior of either MT or MF, respectively. The results verify that the dominant phagosome transport mechanism is MF-associated. MT depolymerization by CoL induces an activation of the F-actin synthesis, which may induce an accelerated relaxation and an increase of stiffness. Cell mechanical properties are not modulated by MF depolymerization, whereas MT depolymerization causes a loss of viscous resistance and a loss of cell elasticity. The mean energy for stochastic phagosome transport is 5*10(-18) Joules and corresponds to a force of 7 pN on a single 1.3-microm phagosome.

Full Text

The Full Text of this article is available as a PDF (251.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkin A., Schütze K., Dziedzic J. M., Euteneuer U., Schliwa M. Force generation of organelle transport measured in vivo by an infrared laser trap. Nature. 1990 Nov 22;348(6299):346–348. doi: 10.1038/348346a0. [DOI] [PubMed] [Google Scholar]
  2. Bausch A. R., Möller W., Sackmann E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J. 1999 Jan;76(1 Pt 1):573–579. doi: 10.1016/S0006-3495(99)77225-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blocker A., Griffiths G., Olivo J. C., Hyman A. A., Severin F. F. A role for microtubule dynamics in phagosome movement. J Cell Sci. 1998 Feb;111(Pt 3):303–312. doi: 10.1242/jcs.111.3.303. [DOI] [PubMed] [Google Scholar]
  4. Blocker A., Severin F. F., Burkhardt J. K., Bingham J. B., Yu H., Olivo J. C., Schroer T. A., Hyman A. A., Griffiths G. Molecular requirements for bi-directional movement of phagosomes along microtubules. J Cell Biol. 1997 Apr 7;137(1):113–129. doi: 10.1083/jcb.137.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonfoco E., Ceccatelli S., Manzo L., Nicotera P. Colchicine induces apoptosis in cerebellar granule cells. Exp Cell Res. 1995 May;218(1):189–200. doi: 10.1006/excr.1995.1147. [DOI] [PubMed] [Google Scholar]
  6. Dabora S. L., Sheetz M. P. Cultured cell extracts support organelle movement on microtubules in vitro. Cell Motil Cytoskeleton. 1988;10(4):482–495. doi: 10.1002/cm.970100405. [DOI] [PubMed] [Google Scholar]
  7. Ding A., Sanchez E., Nathan C. F. Taxol shares the ability of bacterial lipopolysaccharide to induce tyrosine phosphorylation of microtubule-associated protein kinase. J Immunol. 1993 Nov 15;151(10):5596–5602. [PubMed] [Google Scholar]
  8. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519–526. doi: 10.1126/science.279.5350.519. [DOI] [PubMed] [Google Scholar]
  9. Hirokawa N. The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins). Cell Struct Funct. 1996 Oct;21(5):357–367. doi: 10.1247/csf.21.357. [DOI] [PubMed] [Google Scholar]
  10. Horwitz M. A. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983 Dec 1;158(6):2108–2126. doi: 10.1084/jem.158.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hwang S., Ding A. Activation of NF-kappa B in murine macrophages by taxol. Cancer Biochem Biophys. 1995 Jan;14(4):265–272. [PubMed] [Google Scholar]
  12. Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
  13. Janmey P. A. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev. 1998 Jul;78(3):763–781. doi: 10.1152/physrev.1998.78.3.763. [DOI] [PubMed] [Google Scholar]
  14. Kobzik L., Huang S., Paulauskis J. D., Godleski J. J. Particle opsonization and lung macrophage cytokine response. In vitro and in vivo analysis. J Immunol. 1993 Sep 1;151(5):2753–2759. [PubMed] [Google Scholar]
  15. Kobzik L. Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol. 1995 Jul 1;155(1):367–376. [PubMed] [Google Scholar]
  16. Langford G. M. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr Opin Cell Biol. 1995 Feb;7(1):82–88. doi: 10.1016/0955-0674(95)80048-4. [DOI] [PubMed] [Google Scholar]
  17. Marugg R. A., Gehr P., de Leeuw M. Secondary lysosomes as an integral part of the cytoskeleton: a morphological study in rat Kupffer cells. J Struct Biol. 1990 Oct-Dec;105(1-3):146–153. doi: 10.1016/1047-8477(90)90108-o. [DOI] [PubMed] [Google Scholar]
  18. McCulloch C. A., Knowles G. C. Deficiencies in collagen phagocytosis by human fibroblasts in vitro: a mechanism for fibrosis? J Cell Physiol. 1993 Jun;155(3):461–471. doi: 10.1002/jcp.1041550305. [DOI] [PubMed] [Google Scholar]
  19. Möller W., Takenaka S., Rust M., Stahlhofen W., Heyder J. Probing mechanical properties of living cells by magnetopneumography. J Aerosol Med. 1997 Fall;10(3):173–186. doi: 10.1089/jam.1997.10.173. [DOI] [PubMed] [Google Scholar]
  20. Nemoto I. A model of magnetization and relaxation of ferrimagnetic particles in the lung. IEEE Trans Biomed Eng. 1982 Dec;29(12):745–752. doi: 10.1109/TBME.1982.324869. [DOI] [PubMed] [Google Scholar]
  21. Nemoto I., Moeller W. A viscoelastic model of phagosome motion within cells based on cytomagnetometric measurements. IEEE Trans Biomed Eng. 2000 Feb;47(2):170–182. doi: 10.1109/10.821751. [DOI] [PubMed] [Google Scholar]
  22. Nemoto I., Ogura K., Toyotama H. Estimation of the energy of cytoplasmic movements by magnetometry: effects of temperature and intracellular concentration of ATP. IEEE Trans Biomed Eng. 1989 Jun;36(6):598–607. doi: 10.1109/10.29454. [DOI] [PubMed] [Google Scholar]
  23. Newman S. L., Bucher C., Rhodes J., Bullock W. E. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest. 1990 Jan;85(1):223–230. doi: 10.1172/JCI114416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pollard T. D., Ostap E. M. The chemical mechanism of myosin-I: implications for actin-based motility and the evolution of the myosin family of motor proteins. Cell Struct Funct. 1996 Oct;21(5):351–356. doi: 10.1247/csf.21.351. [DOI] [PubMed] [Google Scholar]
  25. Ralph P., Nakoinz I. Phagocytosis and cytolysis by a macrophage tumour and its cloned cell line. Nature. 1975 Oct 2;257(5525):393–394. doi: 10.1038/257393a0. [DOI] [PubMed] [Google Scholar]
  26. Rivero F., Köppel B., Peracino B., Bozzaro S., Siegert F., Weijer C. J., Schleicher M., Albrecht R., Noegel A. A. The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. J Cell Sci. 1996 Nov;109(Pt 11):2679–2691. doi: 10.1242/jcs.109.11.2679. [DOI] [PubMed] [Google Scholar]
  27. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  28. Sheetz M. P. Microtubule motor complexes moving membranous organelles. Cell Struct Funct. 1996 Oct;21(5):369–373. doi: 10.1247/csf.21.369. [DOI] [PubMed] [Google Scholar]
  29. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  30. Sheetz M. P., Vale R., Schnapp B., Schroer T., Reese T. Vesicle movements and microtubule-based motors. J Cell Sci Suppl. 1986;5:181–188. doi: 10.1242/jcs.1986.supplement_5.11. [DOI] [PubMed] [Google Scholar]
  31. Stahlhofen W., Möller W. Behaviour of magnetic micro-particles in the human lung. Radiat Environ Biophys. 1993;32(3):221–238. doi: 10.1007/BF01209772. [DOI] [PubMed] [Google Scholar]
  32. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  33. Takano Y., Okudaira M., Harmon B. V. Apoptosis induced by microtubule disrupting drugs in cultured human lymphoma cells. Inhibitory effects of phorbol ester and zinc sulphate. Pathol Res Pract. 1993 Mar;189(2):197–203. doi: 10.1016/S0344-0338(11)80092-0. [DOI] [PubMed] [Google Scholar]
  34. Tsai M. A., Frank R. S., Waugh R. E. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophys J. 1994 Jun;66(6):2166–2172. doi: 10.1016/S0006-3495(94)81012-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tsai M. A., Waugh R. E., Keng P. C. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel. Biophys J. 1998 Jun;74(6):3282–3291. doi: 10.1016/S0006-3495(98)78035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Valberg P. A., Feldman H. A. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys J. 1987 Oct;52(4):551–561. doi: 10.1016/S0006-3495(87)83244-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Valerius N. H., Stendahl O. I., Hartwig J. H., Stossel T. P. Distribution of actin-binding protein and myosin in neutrophils during chemotaxis and phagocytosis. Adv Exp Med Biol. 1982;141:19–28. doi: 10.1007/978-1-4684-8088-7_3. [DOI] [PubMed] [Google Scholar]
  38. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  39. Wang N. Mechanical interactions among cytoskeletal filaments. Hypertension. 1998 Jul;32(1):162–165. doi: 10.1161/01.hyp.32.1.162. [DOI] [PubMed] [Google Scholar]
  40. Yamaya M., Fukushima T., Sekizawa K., Ohrui T., Sasaki H. Cytoplasmic motility reflects phagocytic activity in alveolar macrophages from dog lungs. Respir Physiol. 1995 Aug;101(2):199–205. doi: 10.1016/0034-5687(95)00019-a. [DOI] [PubMed] [Google Scholar]
  41. Zaner K. S., Valberg P. A. Viscoelasticity of F-actin measured with magnetic microparticles. J Cell Biol. 1989 Nov;109(5):2233–2243. doi: 10.1083/jcb.109.5.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES