Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):756–766. doi: 10.1016/S0006-3495(00)76333-8

Rotational mobility and orientational stability of a transport protein in lipid membranes.

P J Spooner 1, R H Friesen 1, J Knol 1, B Poolman 1, A Watts 1
PMCID: PMC1300975  PMID: 10920009

Abstract

A single-cysteine mutant of the lactose transport protein LacS(C320A/W399C) from Streptococcus thermophilus was selectively labeled with a nitroxide spin label, and its mobility in lipid membranes was studied as a function of its concentration in the membrane by saturation-transfer electron spin resonance. Bovine rhodopsin was also selectively spin-labeled and studied to aid the interpretation of the measurements. Observations of spin-labeled proteins in macroscopically aligned bilayers indicated that the spin label tends to orient so as to reflect the transmembrane orientation of the protein. Rotational correlation times of 1-2 micros for purified spin-labeled bovine rhodopsin in lipid membranes led to viscosities of 2.2 poise for bilayers of dimyristoylphosphatidylcholine (28 degrees C) and 3.0 poise for the specific mixture of lipids used to reconstitute LacS (30 degrees C). The rotational correlation time for LacS did not vary significantly over the range of low concentrations in lipid bilayers, where optimal activity was seen to decrease sharply and was determined to be 9 +/- 1 micros (mean +/- SD) for these samples. This mobility was interpreted as being too low for a monomer but could correspond to a dimer if the protein self-associates into an elongated configuration within the membrane. Rather than changing its oligomeric state, LacS appeared to become less ordered at the concentrations in aligned membranes exceeding 1:100 (w/w) with respect to the lipid.

Full Text

The Full Text of this article is available as a PDF (179.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes J. P., Freed J. H. Dynamics and ordering in mixed model membranes of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine: a 250-GHz electron spin resonance study using cholestane. Biophys J. 1998 Nov;75(5):2532–2546. doi: 10.1016/S0006-3495(98)77698-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baroin A., Thomas D. D., Osborne B., Devaux P. F. Saturation transfer electron paramagnetic resonance on membrane-bound proteins. I-Rotational diffusion of rhodopsin in the visual receptor membrane. Biochem Biophys Res Commun. 1977 Sep 9;78(1):442–447. doi: 10.1016/0006-291x(77)91274-8. [DOI] [PubMed] [Google Scholar]
  3. Cherry R. J., Godfrey R. E. Anisotropic rotation of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment. Biophys J. 1981 Oct;36(1):257–276. doi: 10.1016/S0006-3495(81)84727-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherry R. J., Müller U. Temperature-dependent aggregation of bacteriorhodopsin in dipalmitoyl- and dimyristoylphosphatidylcholine vesicles. J Mol Biol. 1978 May 15;121(2):283–298. doi: 10.1016/s0022-2836(78)80010-2. [DOI] [PubMed] [Google Scholar]
  5. Clark N. A., Rothschild K. J., Luippold D. A., Simon B. A. Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J. 1980 Jul;31(1):65–96. doi: 10.1016/S0006-3495(80)85041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
  7. Daemen F. J. Vertebrate rod outer segment membranes. Biochim Biophys Acta. 1973 Nov 28;300(3):255–288. doi: 10.1016/0304-4157(73)90006-3. [DOI] [PubMed] [Google Scholar]
  8. De Grip W. J. Purification of bovine rhodopsin over concanavalin A--sepharose. Methods Enzymol. 1982;81:197–207. doi: 10.1016/s0076-6879(82)81032-x. [DOI] [PubMed] [Google Scholar]
  9. Dornmair K., Corin A. F., Wright J. K., Jähnig F. The size of the lactose permease derived from rotational diffusion measurements. EMBO J. 1985 Dec 16;4(13A):3633–3638. doi: 10.1002/j.1460-2075.1985.tb04127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Esmann M., Horváth L. I., Marsh D. Saturation-transfer electron spin resonance studies on the mobility of spin-labeled sodium and potassium ion activated adenosinetriphosphatase in membranes from Squalus acanthias. Biochemistry. 1987 Dec 29;26(26):8675–8683. doi: 10.1021/bi00400a028. [DOI] [PubMed] [Google Scholar]
  11. Farahbakhsh Z. T., Altenbach C., Hubbell W. L. Spin labeled cysteines as sensors for protein-lipid interaction and conformation in rhodopsin. Photochem Photobiol. 1992 Dec;56(6):1019–1033. doi: 10.1111/j.1751-1097.1992.tb09725.x. [DOI] [PubMed] [Google Scholar]
  12. Ge M., Budil D. E., Freed J. H. ESR studies of spin-labeled membranes aligned by isopotential spin-dry ultracentrifugation: lipid-protein interactions. Biophys J. 1994 Dec;67(6):2326–2344. doi: 10.1016/S0006-3495(94)80719-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gröbner G., Taylor A., Williamson P. T., Choi G., Glaubitz C., Watts J. A., de Grip W. J., Watts A. Macroscopic orientation of natural and model membranes for structural studies. Anal Biochem. 1997 Dec 1;254(1):132–138. doi: 10.1006/abio.1997.2415. [DOI] [PubMed] [Google Scholar]
  14. Jähnig F. The shape of a membrane protein derived from rotational diffusion. Eur Biophys J. 1986;14(1):63–64. doi: 10.1007/BF00260404. [DOI] [PubMed] [Google Scholar]
  15. Knol J., Sjollema K., Poolman B. Detergent-mediated reconstitution of membrane proteins. Biochemistry. 1998 Nov 17;37(46):16410–16415. doi: 10.1021/bi981596u. [DOI] [PubMed] [Google Scholar]
  16. Knol J., Veenhoff L., Liang W. J., Henderson P. J., Leblanc G., Poolman B. Unidirectional reconstitution into detergent-destabilized liposomes of the purified lactose transport system of Streptococcus thermophilus. J Biol Chem. 1996 Jun 28;271(26):15358–15366. doi: 10.1074/jbc.271.26.15358. [DOI] [PubMed] [Google Scholar]
  17. Krebs A., Villa C., Edwards P. C., Schertler G. F. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J Mol Biol. 1998 Oct 9;282(5):991–1003. doi: 10.1006/jmbi.1998.2070. [DOI] [PubMed] [Google Scholar]
  18. Kusumi A., Sakaki T., Yoshizawa T., Ohnishi S. Protein-lipid interaction in rhodopsin recombinant membranes as studied by protein rotational mobility and lipid alkyl chain flexibility measurements. J Biochem. 1980 Oct;88(4):1103–1111. doi: 10.1093/oxfordjournals.jbchem.a133063. [DOI] [PubMed] [Google Scholar]
  19. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  20. Nikaido H., Saier M. H., Jr Transport proteins in bacteria: common themes in their design. Science. 1992 Nov 6;258(5084):936–942. doi: 10.1126/science.1279804. [DOI] [PubMed] [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Papermaster D. S. Preparation of retinal rod outer segments. Methods Enzymol. 1982;81:48–52. doi: 10.1016/s0076-6879(82)81010-0. [DOI] [PubMed] [Google Scholar]
  23. Pogozheva I. D., Lomize A. L., Mosberg H. I. The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints. Biophys J. 1997 May;72(5):1963–1985. doi: 10.1016/S0006-3495(97)78842-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Poolman B., Knol J., Mollet B., Nieuwenhuis B., Sulter G. Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):778–782. doi: 10.1073/pnas.92.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poolman B., Knol J., van der Does C., Henderson P. J., Liang W. J., Leblanc G., Pourcher T., Mus-Veteau I. Cation and sugar selectivity determinants in a novel family of transport proteins. Mol Microbiol. 1996 Mar;19(5):911–922. doi: 10.1046/j.1365-2958.1996.397949.x. [DOI] [PubMed] [Google Scholar]
  26. Poolman B., Konings W. N. Secondary solute transport in bacteria. Biochim Biophys Acta. 1993 Nov 2;1183(1):5–39. doi: 10.1016/0005-2728(93)90003-x. [DOI] [PubMed] [Google Scholar]
  27. Poolman B., Royer T. J., Mainzer S. E., Schmidt B. F. Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J Bacteriol. 1989 Jan;171(1):244–253. doi: 10.1128/jb.171.1.244-253.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spooner P. J., Veenhoff L. M., Watts A., Poolman B. Structural information on a membrane transport protein from nuclear magnetic resonance spectroscopy using sequence-selective nitroxide labeling. Biochemistry. 1999 Jul 27;38(30):9634–9639. doi: 10.1021/bi990745l. [DOI] [PubMed] [Google Scholar]
  30. le Coutre J., Narasimhan L. R., Patel C. K., Kaback H. R. The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10167–10171. doi: 10.1073/pnas.94.19.10167. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES