Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):776–787. doi: 10.1016/S0006-3495(00)76335-1

Mechanisms of maurotoxin action on Shaker potassium channels.

V Avdonin 1, B Nolan 1, J M Sabatier 1, M De Waard 1, T Hoshi 1
PMCID: PMC1300977  PMID: 10920011

Abstract

Maurotoxin (alpha-KTx6.2) is a toxin derived from the Tunisian chactoid scorpion Scorpio maurus palmatus, and it is a member of a new family of toxins that contain four disulfide bridges (, Eur. J. Biochem. 254:468-479). We investigated the mechanism of the maurotoxin action on voltage-gated K(+) channels expressed in Xenopus oocytes. Maurotoxin blocks the channels in a voltage-dependent manner, with its efficacy increasing with greater hyperpolarization. We show that an amino acid residue in the external mouth of the channel pore segment that is known to be involved in the actions of other peptide toxins is also involved in maurotoxin's interaction with the channel. We conclude that, despite the unusual disulfide bridge pattern, the mechanism of the maurotoxin action is similar to those of other K(+) channel toxins with only three disulfide bridges.

Full Text

The Full Text of this article is available as a PDF (184.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. S., MacKinnon R., Smith C., Miller C. Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J Gen Physiol. 1988 Mar;91(3):317–333. doi: 10.1085/jgp.91.3.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlier E., Avdonin V., Geib S., Fajloun Z., Kharrat R., Rochat H., Sabatier J. M., Hoshi T., De Waard M. Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpion Scorpio maurus, on Shaker K+ channels. J Pept Res. 2000 Jun;55(6):419–427. doi: 10.1034/j.1399-3011.2000.00715.x. [DOI] [PubMed] [Google Scholar]
  3. Catterall W. A., Beneski D. A. Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. J Supramol Struct. 1980;14(3):295–303. doi: 10.1002/jss.400140304. [DOI] [PubMed] [Google Scholar]
  4. Chung S. H., Gage P. W. Signal processing techniques for channel current analysis based on hidden Markov models. Methods Enzymol. 1998;293:420–437. doi: 10.1016/s0076-6879(98)93027-0. [DOI] [PubMed] [Google Scholar]
  5. Dauplais M., Lecoq A., Song J., Cotton J., Jamin N., Gilquin B., Roumestand C., Vita C., de Medeiros C. L., Rowan E. G. On the convergent evolution of animal toxins. Conservation of a diad of functional residues in potassium channel-blocking toxins with unrelated structures. J Biol Chem. 1997 Feb 14;272(7):4302–4309. doi: 10.1074/jbc.272.7.4302. [DOI] [PubMed] [Google Scholar]
  6. García E., Scanlon M., Naranjo D. A marine snail neurotoxin shares with scorpion toxins a convergent mechanism of blockade on the pore of voltage-gated K channels. J Gen Physiol. 1999 Jul;114(1):141–157. doi: 10.1085/jgp.114.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldstein S. A., Miller C. Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophys J. 1993 Oct;65(4):1613–1619. doi: 10.1016/S0006-3495(93)81200-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein S. A., Pheasant D. J., Miller C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron. 1994 Jun;12(6):1377–1388. doi: 10.1016/0896-6273(94)90452-9. [DOI] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Hermann A., Erxleben C. Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons. J Gen Physiol. 1987 Jul;90(1):27–47. doi: 10.1085/jgp.90.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  12. Hoshi T., Zagotta W. N., Aldrich R. W. Shaker potassium channel gating. I: Transitions near the open state. J Gen Physiol. 1994 Feb;103(2):249–278. doi: 10.1085/jgp.103.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  14. Kharrat R., Mabrouk K., Crest M., Darbon H., Oughideni R., Martin-Eauclaire M. F., Jacquet G., el Ayeb M., Van Rietschoten J., Rochat H. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Eur J Biochem. 1996 Dec 15;242(3):491–498. doi: 10.1111/j.1432-1033.1996.0491r.x. [DOI] [PubMed] [Google Scholar]
  15. Kharrat R., Mansuelle P., Sampieri F., Crest M., Oughideni R., Van Rietschoten J., Martin-Eauclaire M. F., Rochat H., El Ayeb M. Maurotoxin, a four disulfide bridge toxin from Scorpio maurus venom: purification, structure and action on potassium channels. FEBS Lett. 1997 Apr 14;406(3):284–290. doi: 10.1016/s0014-5793(97)00285-8. [DOI] [PubMed] [Google Scholar]
  16. Lebrun B., Romi-Lebrun R., Martin-Eauclaire M. F., Yasuda A., Ishiguro M., Oyama Y., Pongs O., Nakajima T. A four-disulphide-bridged toxin, with high affinity towards voltage-gated K+ channels, isolated from Heterometrus spinnifer (Scorpionidae) venom. Biochem J. 1997 Nov 15;328(Pt 1):321–327. doi: 10.1042/bj3280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  18. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  19. MacKinnon R., Miller C. Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. J Gen Physiol. 1988 Mar;91(3):335–349. doi: 10.1085/jgp.91.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 1986 Dec;407(6):577–588. doi: 10.1007/BF00582635. [DOI] [PubMed] [Google Scholar]
  21. Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995 Jul;15(1):5–10. doi: 10.1016/0896-6273(95)90057-8. [DOI] [PubMed] [Google Scholar]
  22. Molina A., Castellano A. G., López-Barneo J. Pore mutations in Shaker K+ channels distinguish between the sites of tetraethylammonium blockade and C-type inactivation. J Physiol. 1997 Mar 1;499(Pt 2):361–367. doi: 10.1113/jphysiol.1997.sp021933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naranjo D., Miller C. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron. 1996 Jan;16(1):123–130. doi: 10.1016/s0896-6273(00)80029-x. [DOI] [PubMed] [Google Scholar]
  24. Olamendi-Portugal T., Gómez-Lagunas F., Gurrola G. B., Possani L. D. A novel structural class of K+-channel blocking toxin from the scorpion Pandinus imperator. Biochem J. 1996 May 1;315(Pt 3):977–981. doi: 10.1042/bj3150977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park C. S., Miller C. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel. Neuron. 1992 Aug;9(2):307–313. doi: 10.1016/0896-6273(92)90169-e. [DOI] [PubMed] [Google Scholar]
  26. Rochat H., Kharrat R., Sabatier J. M., Mansuelle P., Crest M., Martin-Eauclaire M. F., Sampieri F., Oughideni R., Mabrouk K., Jacquet G. Maurotoxin, a four disulfide bridges scorpion toxin acting on K+ channels. Toxicon. 1998 Nov;36(11):1609–1611. doi: 10.1016/s0041-0101(98)00153-6. [DOI] [PubMed] [Google Scholar]
  27. Savarin P., Romi-Lebrun R., Zinn-Justin S., Lebrun B., Nakajima T., Gilquin B., Menez A. Structural and functional consequences of the presence of a fourth disulfide bridge in the scorpion short toxins: solution structure of the potassium channel inhibitor HsTX1. Protein Sci. 1999 Dec;8(12):2672–2685. doi: 10.1110/ps.8.12.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Selisko B., Garcia C., Becerril B., Gómez-Lagunas F., Garay C., Possani L. D. Cobatoxins 1 and 2 from Centruroides noxius Hoffmann constitute a subfamily of potassium-channel-blocking scorpion toxins. Eur J Biochem. 1998 Jun 15;254(3):468–479. doi: 10.1046/j.1432-1327.1998.2540468.x. [DOI] [PubMed] [Google Scholar]
  29. Shon K. J., Stocker M., Terlau H., Stühmer W., Jacobsen R., Walker C., Grilley M., Watkins M., Hillyard D. R., Gray W. R. kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel. J Biol Chem. 1998 Jan 2;273(1):33–38. doi: 10.1074/jbc.273.1.33. [DOI] [PubMed] [Google Scholar]
  30. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Ion conduction through C-type inactivated Shaker channels. J Gen Physiol. 1997 Nov;110(5):539–550. doi: 10.1085/jgp.110.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Terlau H., Boccaccio A., Olivera B. M., Conti F. The block of Shaker K+ channels by kappa-conotoxin PVIIA is state dependent. J Gen Physiol. 1999 Jul;114(1):125–140. doi: 10.1085/jgp.114.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES