Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):802–813. doi: 10.1016/S0006-3495(00)76337-5

Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.

M Schrader 1, K Fendler 1, E Bamberg 1, M Gassel 1, W Epstein 1, K Altendorf 1, S Dröse 1
PMCID: PMC1300979  PMID: 10920013

Abstract

Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed.

Full Text

The Full Text of this article is available as a PDF (693.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altendorf K., Gassel M., Puppe W., Möllenkamp T., Zeeck A., Boddien C., Fendler K., Bamberg E., Dröse S. Structure and function of the Kdp-ATPase of Escherichia coli. Acta Physiol Scand Suppl. 1998 Aug;643:137–146. [PubMed] [Google Scholar]
  2. Andersen J. P., Vilsen B. Structure-function relationships of cation translocation by Ca(2+)- and Na+, K(+)-ATPases studied by site-directed mutagenesis. FEBS Lett. 1995 Feb 13;359(2-3):101–106. doi: 10.1016/0014-5793(95)00019-6. [DOI] [PubMed] [Google Scholar]
  3. Andersen J. P., Vilsen B. Structure-function relationships of the calcium binding sites of the sarcoplasmic reticulum Ca(2+)-ATPase. Acta Physiol Scand Suppl. 1998 Aug;643:45–54. [PubMed] [Google Scholar]
  4. Argüello J. M., Lingrel J. B. Substitutions of serine 775 in the alpha subunit of the Na,K-ATPase selectively disrupt K+ high affinity activation without affecting Na+ interaction. J Biol Chem. 1995 Sep 29;270(39):22764–22771. doi: 10.1074/jbc.270.39.22764. [DOI] [PubMed] [Google Scholar]
  5. Axelsen K. B., Palmgren M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol. 1998 Jan;46(1):84–101. doi: 10.1007/pl00006286. [DOI] [PubMed] [Google Scholar]
  6. Buurman E. T., Kim K. T., Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem. 1995 Mar 24;270(12):6678–6685. doi: 10.1074/jbc.270.12.6678. [DOI] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Durell S. R., Bakker E. P., Guy H. R. Does the KdpA subunit from the high affinity K(+)-translocating P-type KDP-ATPase have a structure similar to that of K(+) channels? Biophys J. 2000 Jan;78(1):188–199. doi: 10.1016/S0006-3495(00)76584-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durell S. R., Guy H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J. 1999 Aug;77(2):789–807. doi: 10.1016/S0006-3495(99)76932-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durell S. R., Hao Y., Nakamura T., Bakker E. P., Guy H. R. Evolutionary relationship between K(+) channels and symporters. Biophys J. 1999 Aug;77(2):775–788. doi: 10.1016/S0006-3495(99)76931-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Epstein W., Davies M. Potassium-dependant mutants of Escherichia coli K-12. J Bacteriol. 1970 Mar;101(3):836–843. doi: 10.1128/jb.101.3.836-843.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Epstein W., Whitelaw V., Hesse J. A K+ transport ATPase in Escherichia coli. J Biol Chem. 1978 Oct 10;253(19):6666–6668. [PubMed] [Google Scholar]
  13. Fendler K., Dröse S., Altendorf K., Bamberg E. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli. Biochemistry. 1996 Jun 18;35(24):8009–8017. doi: 10.1021/bi960175e. [DOI] [PubMed] [Google Scholar]
  14. Fendler K., Dröse S., Epstein W., Bamberg E., Altendorf K. The Kdp-ATPase of Escherichia coli mediates an ATP-dependent, K+-independent electrogenic partial reaction. Biochemistry. 1999 Feb 9;38(6):1850–1856. doi: 10.1021/bi982238u. [DOI] [PubMed] [Google Scholar]
  15. Gassel M., Möllenkamp T., Puppe W., Altendorf K. The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J Biol Chem. 1999 Dec 31;274(53):37901–37907. doi: 10.1074/jbc.274.53.37901. [DOI] [PubMed] [Google Scholar]
  16. Gassel M., Siebers A., Epstein W., Altendorf K. Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim Biophys Acta. 1998 Dec 9;1415(1):77–84. doi: 10.1016/s0005-2736(98)00179-5. [DOI] [PubMed] [Google Scholar]
  17. Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
  18. Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henkel R. D., VandeBerg J. L., Walsh R. A. A microassay for ATPase. Anal Biochem. 1988 Mar;169(2):312–318. doi: 10.1016/0003-2697(88)90290-4. [DOI] [PubMed] [Google Scholar]
  20. Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iwane A. H., Ikeda I., Kimura Y., Fujiyoshi Y., Altendorf K., Epstein W. Two-dimensional crystals of the Kdp-ATPase of Escherichia coli. FEBS Lett. 1996 Nov 4;396(2-3):172–176. doi: 10.1016/0014-5793(96)01096-4. [DOI] [PubMed] [Google Scholar]
  22. Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997;20:91–123. doi: 10.1146/annurev.neuro.20.1.91. [DOI] [PubMed] [Google Scholar]
  23. Jan L. Y., Jan Y. N. Potassium channels and their evolving gates. Nature. 1994 Sep 8;371(6493):119–122. doi: 10.1038/371119a0. [DOI] [PubMed] [Google Scholar]
  24. Jorgensen P. L., Nielsen J. M., Rasmussen J. H., Pedersen P. A. Structure-function relationships based on ATP binding and cation occlusion at equilibrium in Na,K-ATPase. Acta Physiol Scand Suppl. 1998 Aug;643:79–87. [PubMed] [Google Scholar]
  25. Karlish S. J., Goldshleger R., Jørgensen P. L. Location of Asn831 of the alpha chain of Na/K-ATPase at the cytoplasmic surface. Implication for topological models. J Biol Chem. 1993 Feb 15;268(5):3471–3478. [PubMed] [Google Scholar]
  26. Karlish S. J., Goldshleger R., Stein W. D. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4566–4570. doi: 10.1073/pnas.87.12.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
  28. MacLennan D. H., Rice W. J., Odermatt A., Green N. M. Structure-function relationships in the Ca(2+)-binding and translocation domain of SERCA1: physiological correlates in Brody disease. Acta Physiol Scand Suppl. 1998 Aug;643:55–67. [PubMed] [Google Scholar]
  29. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  30. Nakamura R. L., Anderson J. A., Gaber R. F. Determination of key structural requirements of a K+ channel pore. J Biol Chem. 1997 Jan 10;272(2):1011–1018. doi: 10.1074/jbc.272.2.1011. [DOI] [PubMed] [Google Scholar]
  31. Nielsen J. M., Pedersen P. A., Karlish S. J., Jorgensen P. L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry. 1998 Feb 17;37(7):1961–1968. doi: 10.1021/bi972524q. [DOI] [PubMed] [Google Scholar]
  32. Puppe W., Siebers A., Altendorf K. The phosphorylation site of the Kdp-ATPase of Escherichia coli: site-directed mutagenesis of the aspartic acid residues 300 and 307 of the KdpB subunit. Mol Microbiol. 1992 Dec;6(23):3511–3520. doi: 10.1111/j.1365-2958.1992.tb01786.x. [DOI] [PubMed] [Google Scholar]
  33. Rhoads D. B., Waters F. B., Epstein W. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol. 1976 Mar;67(3):325–341. doi: 10.1085/jgp.67.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
  35. Siebers A., Altendorf K. Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J Biol Chem. 1989 Apr 5;264(10):5831–5838. [PubMed] [Google Scholar]
  36. Siebers A., Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988 Dec 1;178(1):131–140. doi: 10.1111/j.1432-1033.1988.tb14438.x. [DOI] [PubMed] [Google Scholar]
  37. Slesinger P. A., Patil N., Liao Y. J., Jan Y. N., Jan L. Y., Cox D. R. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996 Feb;16(2):321–331. doi: 10.1016/s0896-6273(00)80050-1. [DOI] [PubMed] [Google Scholar]
  38. Vilsen B., Andersen J. P. CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Dec 25;267(36):25739–25743. [PubMed] [Google Scholar]
  39. Vilsen B., Andersen J. P. Interdependence of Ca2+ occlusion sites in the unphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase complex with CrATP. J Biol Chem. 1992 Feb 15;267(5):3539–3550. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES