Abstract
Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed.
Full Text
The Full Text of this article is available as a PDF (693.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altendorf K., Gassel M., Puppe W., Möllenkamp T., Zeeck A., Boddien C., Fendler K., Bamberg E., Dröse S. Structure and function of the Kdp-ATPase of Escherichia coli. Acta Physiol Scand Suppl. 1998 Aug;643:137–146. [PubMed] [Google Scholar]
- Andersen J. P., Vilsen B. Structure-function relationships of cation translocation by Ca(2+)- and Na+, K(+)-ATPases studied by site-directed mutagenesis. FEBS Lett. 1995 Feb 13;359(2-3):101–106. doi: 10.1016/0014-5793(95)00019-6. [DOI] [PubMed] [Google Scholar]
- Andersen J. P., Vilsen B. Structure-function relationships of the calcium binding sites of the sarcoplasmic reticulum Ca(2+)-ATPase. Acta Physiol Scand Suppl. 1998 Aug;643:45–54. [PubMed] [Google Scholar]
- Argüello J. M., Lingrel J. B. Substitutions of serine 775 in the alpha subunit of the Na,K-ATPase selectively disrupt K+ high affinity activation without affecting Na+ interaction. J Biol Chem. 1995 Sep 29;270(39):22764–22771. doi: 10.1074/jbc.270.39.22764. [DOI] [PubMed] [Google Scholar]
- Axelsen K. B., Palmgren M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol. 1998 Jan;46(1):84–101. doi: 10.1007/pl00006286. [DOI] [PubMed] [Google Scholar]
- Buurman E. T., Kim K. T., Epstein W. Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem. 1995 Mar 24;270(12):6678–6685. doi: 10.1074/jbc.270.12.6678. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Durell S. R., Bakker E. P., Guy H. R. Does the KdpA subunit from the high affinity K(+)-translocating P-type KDP-ATPase have a structure similar to that of K(+) channels? Biophys J. 2000 Jan;78(1):188–199. doi: 10.1016/S0006-3495(00)76584-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durell S. R., Guy H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J. 1999 Aug;77(2):789–807. doi: 10.1016/S0006-3495(99)76932-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durell S. R., Hao Y., Nakamura T., Bakker E. P., Guy H. R. Evolutionary relationship between K(+) channels and symporters. Biophys J. 1999 Aug;77(2):775–788. doi: 10.1016/S0006-3495(99)76931-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein W., Davies M. Potassium-dependant mutants of Escherichia coli K-12. J Bacteriol. 1970 Mar;101(3):836–843. doi: 10.1128/jb.101.3.836-843.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein W., Whitelaw V., Hesse J. A K+ transport ATPase in Escherichia coli. J Biol Chem. 1978 Oct 10;253(19):6666–6668. [PubMed] [Google Scholar]
- Fendler K., Dröse S., Altendorf K., Bamberg E. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli. Biochemistry. 1996 Jun 18;35(24):8009–8017. doi: 10.1021/bi960175e. [DOI] [PubMed] [Google Scholar]
- Fendler K., Dröse S., Epstein W., Bamberg E., Altendorf K. The Kdp-ATPase of Escherichia coli mediates an ATP-dependent, K+-independent electrogenic partial reaction. Biochemistry. 1999 Feb 9;38(6):1850–1856. doi: 10.1021/bi982238u. [DOI] [PubMed] [Google Scholar]
- Gassel M., Möllenkamp T., Puppe W., Altendorf K. The KdpF subunit is part of the K(+)-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J Biol Chem. 1999 Dec 31;274(53):37901–37907. doi: 10.1074/jbc.274.53.37901. [DOI] [PubMed] [Google Scholar]
- Gassel M., Siebers A., Epstein W., Altendorf K. Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim Biophys Acta. 1998 Dec 9;1415(1):77–84. doi: 10.1016/s0005-2736(98)00179-5. [DOI] [PubMed] [Google Scholar]
- Heginbotham L., Abramson T., MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science. 1992 Nov 13;258(5085):1152–1155. doi: 10.1126/science.1279807. [DOI] [PubMed] [Google Scholar]
- Heginbotham L., Lu Z., Abramson T., MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J. 1994 Apr;66(4):1061–1067. doi: 10.1016/S0006-3495(94)80887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henkel R. D., VandeBerg J. L., Walsh R. A. A microassay for ATPase. Anal Biochem. 1988 Mar;169(2):312–318. doi: 10.1016/0003-2697(88)90290-4. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F., Laris P. C. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe. J Physiol. 1974 Jun;239(3):519–552. doi: 10.1113/jphysiol.1974.sp010581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwane A. H., Ikeda I., Kimura Y., Fujiyoshi Y., Altendorf K., Epstein W. Two-dimensional crystals of the Kdp-ATPase of Escherichia coli. FEBS Lett. 1996 Nov 4;396(2-3):172–176. doi: 10.1016/0014-5793(96)01096-4. [DOI] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci. 1997;20:91–123. doi: 10.1146/annurev.neuro.20.1.91. [DOI] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N. Potassium channels and their evolving gates. Nature. 1994 Sep 8;371(6493):119–122. doi: 10.1038/371119a0. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L., Nielsen J. M., Rasmussen J. H., Pedersen P. A. Structure-function relationships based on ATP binding and cation occlusion at equilibrium in Na,K-ATPase. Acta Physiol Scand Suppl. 1998 Aug;643:79–87. [PubMed] [Google Scholar]
- Karlish S. J., Goldshleger R., Jørgensen P. L. Location of Asn831 of the alpha chain of Na/K-ATPase at the cytoplasmic surface. Implication for topological models. J Biol Chem. 1993 Feb 15;268(5):3471–3478. [PubMed] [Google Scholar]
- Karlish S. J., Goldshleger R., Stein W. D. A 19-kDa C-terminal tryptic fragment of the alpha chain of Na/K-ATPase is essential for occlusion and transport of cations. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4566–4570. doi: 10.1073/pnas.87.12.4566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutsenko S., Kaplan J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995 Dec 5;34(48):15607–15613. doi: 10.1021/bi00048a001. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Rice W. J., Odermatt A., Green N. M. Structure-function relationships in the Ca(2+)-binding and translocation domain of SERCA1: physiological correlates in Brody disease. Acta Physiol Scand Suppl. 1998 Aug;643:55–67. [PubMed] [Google Scholar]
- Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
- Nakamura R. L., Anderson J. A., Gaber R. F. Determination of key structural requirements of a K+ channel pore. J Biol Chem. 1997 Jan 10;272(2):1011–1018. doi: 10.1074/jbc.272.2.1011. [DOI] [PubMed] [Google Scholar]
- Nielsen J. M., Pedersen P. A., Karlish S. J., Jorgensen P. L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry. 1998 Feb 17;37(7):1961–1968. doi: 10.1021/bi972524q. [DOI] [PubMed] [Google Scholar]
- Puppe W., Siebers A., Altendorf K. The phosphorylation site of the Kdp-ATPase of Escherichia coli: site-directed mutagenesis of the aspartic acid residues 300 and 307 of the KdpB subunit. Mol Microbiol. 1992 Dec;6(23):3511–3520. doi: 10.1111/j.1365-2958.1992.tb01786.x. [DOI] [PubMed] [Google Scholar]
- Rhoads D. B., Waters F. B., Epstein W. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol. 1976 Mar;67(3):325–341. doi: 10.1085/jgp.67.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta. 1988 Feb 24;947(1):1–28. doi: 10.1016/0304-4157(88)90017-2. [DOI] [PubMed] [Google Scholar]
- Siebers A., Altendorf K. Characterization of the phosphorylated intermediate of the K+-translocating Kdp-ATPase from Escherichia coli. J Biol Chem. 1989 Apr 5;264(10):5831–5838. [PubMed] [Google Scholar]
- Siebers A., Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988 Dec 1;178(1):131–140. doi: 10.1111/j.1432-1033.1988.tb14438.x. [DOI] [PubMed] [Google Scholar]
- Slesinger P. A., Patil N., Liao Y. J., Jan Y. N., Jan L. Y., Cox D. R. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996 Feb;16(2):321–331. doi: 10.1016/s0896-6273(00)80050-1. [DOI] [PubMed] [Google Scholar]
- Vilsen B., Andersen J. P. CrATP-induced Ca2+ occlusion in mutants of the Ca(2+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Dec 25;267(36):25739–25743. [PubMed] [Google Scholar]
- Vilsen B., Andersen J. P. Interdependence of Ca2+ occlusion sites in the unphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase complex with CrATP. J Biol Chem. 1992 Feb 15;267(5):3539–3550. [PubMed] [Google Scholar]