Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):828–840. doi: 10.1016/S0006-3495(00)76339-9

Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca(2+) release channel (ryanodine receptor) activity and conductance.

L Gao 1, D Balshaw 1, L Xu 1, A Tripathy 1, C Xin 1, G Meissner 1
PMCID: PMC1300981  PMID: 10920015

Abstract

We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance. Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the selectivity filter of K(+) channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely conserved in RyRs and IP(3)Rs (D4903A and D4907A) showed cellular Ca(2+) release in response to caffeine, Ca(2+)-dependent [(3)H]ryanodine binding, and single-channel K(+) and Ca(2+) conductances not significantly different from wild-type RyR1. Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of high-affinity [(3)H]ryanodine binding and regulation by Ca(2+), and an altered caffeine-induced Ca(2+) release in intact cells. Mutant channels with amino acid residue substitutions that are identical in the RyR and IP(3)R families (D4899A, D4899R, and R4913E) exhibited a decreased K(+) conductance and showed a loss of high-affinity [(3)H]ryanodine binding and loss of single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K(+) and Ca(2+) conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of RyR1.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balshaw D., Gao L., Meissner G. Luminal loop of the ryanodine receptor: a pore-forming segment? Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3345–3347. doi: 10.1073/pnas.96.7.3345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhat M. B., Zhao J., Hayek S., Freeman E. C., Takeshima H., Ma J. Deletion of amino acids 1641-2437 from the foot region of skeletal muscle ryanodine receptor alters the conduction properties of the Ca release channel. Biophys J. 1997 Sep;73(3):1320–1328. doi: 10.1016/S0006-3495(97)78165-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhat M. B., Zhao J., Takeshima H., Ma J. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor. Biophys J. 1997 Sep;73(3):1329–1336. doi: 10.1016/S0006-3495(97)78166-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Callaway C., Seryshev A., Wang J. P., Slavik K. J., Needleman D. H., Cantu C., 3rd, Wu Y., Jayaraman T., Marks A. R., Hamilton S. L. Localization of the high and low affinity [3H]ryanodine binding sites on the skeletal muscle Ca2+ release channel. J Biol Chem. 1994 Jun 3;269(22):15876–15884. [PubMed] [Google Scholar]
  5. Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
  6. Chen S. R., Zhang L., MacLennan D. H. Antibodies as probes for Ca2+ activation sites in the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1993 Jun 25;268(18):13414–13421. [PubMed] [Google Scholar]
  7. Coronado R., Morrissette J., Sukhareva M., Vaughan D. M. Structure and function of ryanodine receptors. Am J Physiol. 1994 Jun;266(6 Pt 1):C1485–C1504. doi: 10.1152/ajpcell.1994.266.6.C1485. [DOI] [PubMed] [Google Scholar]
  8. Dart C., Leyland M. L., Spencer P. J., Stanfield P. R., Sutcliffe M. J. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis. J Physiol. 1998 Aug 15;511(Pt 1):25–32. doi: 10.1111/j.1469-7793.1998.025bi.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  10. Du G. G., MacLennan D. H. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1998 Nov 27;273(48):31867–31872. doi: 10.1074/jbc.273.48.31867. [DOI] [PubMed] [Google Scholar]
  11. Franzini-Armstrong C., Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997 Jul;77(3):699–729. doi: 10.1152/physrev.1997.77.3.699. [DOI] [PubMed] [Google Scholar]
  12. Gao L., Tripathy A., Lu X., Meissner G. Evidence for a role of C-terminal amino acid residues in skeletal muscle Ca2+ release channel (ryanodine receptor) function. FEBS Lett. 1997 Jul 21;412(1):223–226. doi: 10.1016/s0014-5793(97)00781-3. [DOI] [PubMed] [Google Scholar]
  13. Grunwald R., Meissner G. Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor). J Biol Chem. 1995 May 12;270(19):11338–11347. doi: 10.1074/jbc.270.19.11338. [DOI] [PubMed] [Google Scholar]
  14. Lee H. B., Xu L., Meissner G. Reconstitution of the skeletal muscle ryanodine receptor-Ca2+ release channel protein complex into proteoliposomes. J Biol Chem. 1994 May 6;269(18):13305–13312. [PubMed] [Google Scholar]
  15. Lynch P. J., Tong J., Lehane M., Mallet A., Giblin L., Heffron J. J., Vaughan P., Zafra G., MacLennan D. H., McCarthy T. V. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4164–4169. doi: 10.1073/pnas.96.7.4164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marty I., Villaz M., Arlaud G., Bally I., Ronjat M. Transmembrane orientation of the N-terminal and C-terminal ends of the ryanodine receptor in the sarcoplasmic reticulum of rabbit skeletal muscle. Biochem J. 1994 Mar 15;298(Pt 3):743–749. doi: 10.1042/bj2980743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  18. Nakai J., Gao L., Xu L., Xin C., Pasek D. A., Meissner G. Evidence for a role of C-terminus in Ca(2+) inactivation of skeletal muscle Ca(2+) release channel (ryanodine receptor). FEBS Lett. 1999 Oct 8;459(2):154–158. doi: 10.1016/s0014-5793(99)01232-6. [DOI] [PubMed] [Google Scholar]
  19. Phillips M. S., Fujii J., Khanna V. K., DeLeon S., Yokobata K., de Jong P. J., MacLennan D. H. The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene. Genomics. 1996 May 15;34(1):24–41. doi: 10.1006/geno.1996.0238. [DOI] [PubMed] [Google Scholar]
  20. Rousseau E., Ladine J., Liu Q. Y., Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys. 1988 Nov 15;267(1):75–86. doi: 10.1016/0003-9861(88)90010-0. [DOI] [PubMed] [Google Scholar]
  21. Serysheva I. I., Orlova E. V., Chiu W., Sherman M. B., Hamilton S. L., van Heel M. Electron cryomicroscopy and angular reconstitution used to visualize the skeletal muscle calcium release channel. Nat Struct Biol. 1995 Jan;2(1):18–24. doi: 10.1038/nsb0195-18. [DOI] [PubMed] [Google Scholar]
  22. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  23. Takeshima H., Nishimura S., Matsumoto T., Ishida H., Kangawa K., Minamino N., Matsuo H., Ueda M., Hanaoka M., Hirose T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989 Jun 8;339(6224):439–445. doi: 10.1038/339439a0. [DOI] [PubMed] [Google Scholar]
  24. Tripathy A., Xu L., Mann G., Meissner G. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor). Biophys J. 1995 Jul;69(1):106–119. doi: 10.1016/S0006-3495(95)79880-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wagenknecht T., Grassucci R., Berkowitz J., Wiederrecht G. J., Xin H. B., Fleischer S. Cryoelectron microscopy resolves FK506-binding protein sites on the skeletal muscle ryanodine receptor. Biophys J. 1996 Apr;70(4):1709–1715. doi: 10.1016/S0006-3495(96)79733-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Witcher D. R., McPherson P. S., Kahl S. D., Lewis T., Bentley P., Mullinnix M. J., Windass J. D., Campbell K. P. Photoaffinity labeling of the ryanodine receptor/Ca2+ release channel with an azido derivative of ryanodine. J Biol Chem. 1994 May 6;269(18):13076–13079. [PubMed] [Google Scholar]
  27. Yamagishi T., Janecki M., Marban E., Tomaselli G. F. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis. Biophys J. 1997 Jul;73(1):195–204. doi: 10.1016/S0006-3495(97)78060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhao M., Li P., Li X., Zhang L., Winkfein R. J., Chen S. R. Molecular identification of the ryanodine receptor pore-forming segment. J Biol Chem. 1999 Sep 10;274(37):25971–25974. doi: 10.1074/jbc.274.37.25971. [DOI] [PubMed] [Google Scholar]
  29. Zorzato F., Fujii J., Otsu K., Phillips M., Green N. M., Lai F. A., Meissner G., MacLennan D. H. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1990 Feb 5;265(4):2244–2256. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES