Abstract
The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the BBM, as indicated by a break in the Arrhenius plot. The transporter has a broad substrate range that includes Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Under physiological conditions the transport of divalent metal ions is proton-coupled, leading to the acidification of the internal cavity of BBMVs. The divalent metal ion transporter can be solubilized in excess detergent (30 mM diheptanoylphosphatidylcholine or 1% Triton X-100) and reconstituted into an artificial membrane system by detergent removal. The reconstituted membrane system showed metal ion transport characteristics similar to those of the original BBMVs. The properties of the protein described here closely resemble those of the proton-coupled divalent cation transporter (DCT1, Nramp2) described by, Nature. 388:482-488). We may conclude that a protein of the Nramp family is present in the BBM, facilitating the transport of Fe(2+) and other divalent transition metal ions.
Full Text
The Full Text of this article is available as a PDF (126.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez-Hernandez X., Smith M., Glass J. Regulation of iron uptake and transport by transferrin in Caco-2 cells, an intestinal cell line. Biochim Biophys Acta. 1994 Jun 22;1192(2):215–222. doi: 10.1016/0005-2736(94)90121-x. [DOI] [PubMed] [Google Scholar]
- Boffelli D., Weber F. E., Compassi S., Werder M., Schulthess G., Hauser H. Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane. Biochemistry. 1997 Sep 2;36(35):10784–10792. doi: 10.1021/bi970625i. [DOI] [PubMed] [Google Scholar]
- Brasitus T. A., Schachter D., Mamouneas T. G. Functional interactions of lipids and proteins in rat intestinal microvillus membranes. Biochemistry. 1979 Sep 18;18(19):4136–4144. doi: 10.1021/bi00586a013. [DOI] [PubMed] [Google Scholar]
- Brasitus T. A., Tall A. R., Schachter D. Thermotropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry. 1980 Mar 18;19(6):1256–1261. doi: 10.1021/bi00547a033. [DOI] [PubMed] [Google Scholar]
- Breuer W., Epsztejn S., Millgram P., Cabantchik I. Z. Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol. 1995 Jun;268(6 Pt 1):C1354–C1361. doi: 10.1152/ajpcell.1995.268.6.C1354. [DOI] [PubMed] [Google Scholar]
- Canonne-Hergaux F., Gruenheid S., Ponka P., Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999 Jun 15;93(12):4406–4417. [PubMed] [Google Scholar]
- Conrad M. E., Umbreit J. N., Moore E. G., Heiman D. Mobilferrin is an intermediate in iron transport between transferrin and hemoglobin in K562 cells. J Clin Invest. 1996 Sep 15;98(6):1449–1454. doi: 10.1172/JCI118933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad M. E., Umbreit J. N., Moore E. G., Peterson R. D., Jones M. B. A newly identified iron binding protein in duodenal mucosa of rats. Purification and characterization of mobilferrin. J Biol Chem. 1990 Mar 25;265(9):5273–5279. [PubMed] [Google Scholar]
- Dautry-Varsat A., Ciechanover A., Lodish H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. doi: 10.1073/pnas.80.8.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1148–1153. doi: 10.1073/pnas.95.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming M. D., Trenor C. C., 3rd, Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997 Aug;16(4):383–386. doi: 10.1038/ng0897-383. [DOI] [PubMed] [Google Scholar]
- Glahn R. P., Wien E. M., Van Campen D. R., Miller D. D. Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies: use of a novel in vitro method for rapid estimation of iron bioavailability. J Nutr. 1996 Jan;126(1):332–339. doi: 10.1093/jn/126.1.332. [DOI] [PubMed] [Google Scholar]
- Gruenheid S., Cellier M., Vidal S., Gros P. Identification and characterization of a second mouse Nramp gene. Genomics. 1995 Jan 20;25(2):514–525. doi: 10.1016/0888-7543(95)80053-o. [DOI] [PubMed] [Google Scholar]
- Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
- Gutierrez J. A., Wessling-Resnick M. Molecular mechanisms of iron transport. Crit Rev Eukaryot Gene Expr. 1996;6(1):1–14. doi: 10.1615/critreveukargeneexpr.v6.i1.10. [DOI] [PubMed] [Google Scholar]
- Gutierrez J. A., Yu J., Wessling-Resnick M. Characterization and chromosomal mapping of the human gene for SFT, a stimulator of Fe transport. Biochem Biophys Res Commun. 1998 Dec 30;253(3):739–742. doi: 10.1006/bbrc.1998.9836. [DOI] [PubMed] [Google Scholar]
- Haase W., Schäfer A., Murer H., Kinne R. Studies on the orientation of brush-border membrane vesicles. Biochem J. 1978 Apr 15;172(1):57–62. doi: 10.1042/bj1720057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han O., Failla M. L., Hill A. D., Morris E. R., Smith J. C., Jr Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J Nutr. 1995 May;125(5):1291–1299. doi: 10.1093/jn/125.5.1291. [DOI] [PubMed] [Google Scholar]
- Hauser H., Dyer J. H., Nandy A., Vega M. A., Werder M., Bieliauskaite E., Weber F. E., Compassi S., Gemperli A., Boffelli D. Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry. 1998 Dec 22;37(51):17843–17850. doi: 10.1021/bi982404y. [DOI] [PubMed] [Google Scholar]
- Hauser H., Gains N., Müller M. Vesiculation of unsonicated phospholipid dispersions containing phosphatidic acid by pH adjustment: physicochemical properties of the resulting unilamellar vesicles. Biochemistry. 1983 Sep 27;22(20):4775–4781. doi: 10.1021/bi00289a025. [DOI] [PubMed] [Google Scholar]
- Hauser H., Gains N., Semenza G., Spiess M. Orientation and motion of spin-labels in rabbit small intestinal brush border vesicle membranes. Biochemistry. 1982 Oct 26;21(22):5621–5628. doi: 10.1021/bi00265a036. [DOI] [PubMed] [Google Scholar]
- Hauser H., Howell K., Dawson R. M., Bowyer D. E. Rabbit small intestinal brush border membrane preparation and lipid composition. Biochim Biophys Acta. 1980 Nov 18;602(3):567–577. doi: 10.1016/0005-2736(80)90335-1. [DOI] [PubMed] [Google Scholar]
- Huebers H. A., Huebers E., Csiba E., Rummel W., Finch C. A. The cadmium effect on iron absorption. Am J Clin Nutr. 1987 May;45(5):1007–1012. doi: 10.1093/ajcn/45.5.1007. [DOI] [PubMed] [Google Scholar]
- Jordan I., Kaplan J. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem J. 1994 Sep 15;302(Pt 3):875–879. doi: 10.1042/bj3020875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessi J., Poirée J. C., Wehrli E., Bachofen R., Semenza G., Hauser H. Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry. 1994 Sep 6;33(35):10825–10836. doi: 10.1021/bi00201a033. [DOI] [PubMed] [Google Scholar]
- Klip A., Grinstein S., Semenza G. Transmembrane disposition of the phlorizin binding protein of intestinal brush borders. FEBS Lett. 1979 Mar 1;99(1):91–96. doi: 10.1016/0014-5793(79)80256-2. [DOI] [PubMed] [Google Scholar]
- Marx J. J., Aisen P. Iron uptake by rabbit intestinal mucosal membrane vesicles. Biochim Biophys Acta. 1981 Dec 7;649(2):297–304. doi: 10.1016/0005-2736(81)90418-1. [DOI] [PubMed] [Google Scholar]
- Mütsch B., Gains N., Hauser H. Order-disorder phase transition and lipid dynamics in rabbit small intestinal brush border membranes. Effect of proteins. Biochemistry. 1983 Dec 20;22(26):6326–6333. doi: 10.1021/bi00295a044. [DOI] [PubMed] [Google Scholar]
- Perevucnik G., Schurtenberger P., Lasic D. D., Hauser H. Size analysis of biological membrane vesicles by gel filtration, dynamic light scattering and electron microscopy. Biochim Biophys Acta. 1985 Nov 21;821(1):169–173. doi: 10.1016/0005-2736(85)90168-3. [DOI] [PubMed] [Google Scholar]
- Perewusnyk G., Funk F. Iron uptake by rabbit intestinal brush border membrane vesicles involves movement through the outer surface, membrane interior, inner surface and aqueous interior. J Nutr. 1997 Jun;127(6):1092–1098. doi: 10.1093/jn/127.6.1092. [DOI] [PubMed] [Google Scholar]
- Qian Z. M., Tang P. L., Wang Q. Iron crosses the endosomal membrane by a carrier-mediated process. Prog Biophys Mol Biol. 1997;67(1):1–15. doi: 10.1016/s0079-6107(97)00009-6. [DOI] [PubMed] [Google Scholar]
- Raja K. B., Simpson R. J., Peters T. J. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta. 1992 Jun 10;1135(2):141–146. doi: 10.1016/0167-4889(92)90129-y. [DOI] [PubMed] [Google Scholar]
- Savigni D. L., Morgan E. H. Transport mechanisms for iron and other transition metals in rat and rabbit erythroid cells. J Physiol. 1998 May 1;508(Pt 3):837–850. doi: 10.1111/j.1469-7793.1998.837bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulthess G., Compassi S., Boffelli D., Werder M., Weber F. E., Hauser H. A comparative study of sterol absorption in different small-intestinal brush border membrane models. J Lipid Res. 1996 Nov;37(11):2405–2419. [PubMed] [Google Scholar]
- Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
- Smythe E., Warren G. The mechanism of receptor-mediated endocytosis. Eur J Biochem. 1991 Dec 18;202(3):689–699. doi: 10.1111/j.1432-1033.1991.tb16424.x. [DOI] [PubMed] [Google Scholar]
- Tandy S., Williams M., Leggett A., Lopez-Jimenez M., Dedes M., Ramesh B., Srai S. K., Sharp P. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem. 2000 Jan 14;275(2):1023–1029. doi: 10.1074/jbc.275.2.1023. [DOI] [PubMed] [Google Scholar]
- Thurnhofer H., Hauser H. The uptake of phosphatidylcholine by small intestinal brush border membrane is protein-mediated. Biochim Biophys Acta. 1990 May 24;1024(2):249–262. doi: 10.1016/0005-2736(90)90351-n. [DOI] [PubMed] [Google Scholar]
- Trowbridge I. S. Endocytosis and signals for internalization. Curr Opin Cell Biol. 1991 Aug;3(4):634–641. doi: 10.1016/0955-0674(91)90034-v. [DOI] [PubMed] [Google Scholar]
- Umbreit J. N., Conrad M. E., Moore E. G., Latour L. F. Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm. Semin Hematol. 1998 Jan;35(1):13–26. [PubMed] [Google Scholar]
- Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
- Wienk K. J., Marx J. J., Lemmens A. G., Brink E. J., Van Der Meer R., Beynen A. C. Mechanism underlying the inhibitory effect of high calcium carbonate intake on iron bioavailability from ferrous sulphate in anaemic rats. Br J Nutr. 1996 Jan;75(1):109–120. doi: 10.1079/bjn19960114. [DOI] [PubMed] [Google Scholar]
- de Silva D. M., Askwith C. C., Kaplan J. Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev. 1996 Jan;76(1):31–47. doi: 10.1152/physrev.1996.76.1.31. [DOI] [PubMed] [Google Scholar]
