Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):885–897. doi: 10.1016/S0006-3495(00)76344-2

1H and (13)C NMR of multilamellar dispersions of polyunsaturated (22:6) phospholipids.

S Everts 1, J H Davis 1
PMCID: PMC1300986  PMID: 10920020

Abstract

The polyunsaturated fatty acid docosahexaenoic acid (DHA) makes up approximately 50% of the lipid chains in the retinal rod outer segment disk membranes and a large fraction of the lipid chains in the membranes of neuronal tissues. There is an extensive literature concerned with the dietary requirements for essential fatty acids and the importance of DHA to human health, but relatively little research has been done on the physical properties of this important molecule. Using (1)H and (13)C MAS NMR measurements of dispersions of 1-palmitoyl-2-docosahexaenoyl-phosphatidylcholine in excess phosphate buffer, we have unambiguously assigned most of the resonances in both the (1)H and (13)C NMR spectra. We were able to use cross-polarization spectroscopy to follow the transfer of polarization from specific (1)H nuclei not only to their directly bonded (13)C but also to those (13)C that are in close proximity, even though they are not directly bonded. Cross-peaks in two-dimensional cross-polarization spectra revealed a close association between the choline headgroup and at least part of the DHA chain but not with the palmitate chain. Finally, we examined the dynamics of the different parts of this lipid molecule, using rotating frame spin-lattice relaxation measurements, and found that methylene groups of both chains experience important motions with correlation times in the 10-micros range, with those for the palmitate chain being approximately 50% longer than those of the DHA chain. The choline headgroup and the chain terminal groups have significantly shorter correlation times, and that part of the dipolar interaction that is fluctuating at these correlation times is significantly smaller for these groups than it is for the palmitate and DHA chain methylenes.

Full Text

The Full Text of this article is available as a PDF (163.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate K. R., Glomset J. A. Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J Lipid Res. 1986 Jun;27(6):658–680. [PubMed] [Google Scholar]
  2. Baenziger J. E., Jarrell H. C., Hill R. J., Smith I. C. Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: effects of two cis-unsaturated double bonds. Biochemistry. 1991 Jan 29;30(4):894–903. doi: 10.1021/bi00218a003. [DOI] [PubMed] [Google Scholar]
  3. Bertani P., Raya J., Reinheimer P., Gougeon R., Delmotte L., Hirschinger J. 19F/29Si distance determination in fluoride-containing octadecasil by Hartmann-Hahn cross-polarization under fast magic-angle spinning. Solid State Nucl Magn Reson. 1999 May;13(4):219–229. doi: 10.1016/s0926-2040(98)00093-9. [DOI] [PubMed] [Google Scholar]
  4. Birch E. E., Birch D. G., Hoffman D. R., Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci. 1992 Oct;33(11):3242–3253. [PubMed] [Google Scholar]
  5. Brown M. F. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994 Sep 6;73(1-2):159–180. doi: 10.1016/0009-3084(94)90180-5. [DOI] [PubMed] [Google Scholar]
  6. Davis J. H., Auger M., Hodges R. S. High resolution 1H nuclear magnetic resonance of a transmembrane peptide. Biophys J. 1995 Nov;69(5):1917–1932. doi: 10.1016/S0006-3495(95)80062-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis J. H. The influence of membrane proteins on lipid dynamics. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):223–258. doi: 10.1016/0009-3084(86)90072-1. [DOI] [PubMed] [Google Scholar]
  8. De Loof H., Harvey S. C., Segrest J. P., Pastor R. W. Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. Biochemistry. 1991 Feb 26;30(8):2099–2113. doi: 10.1021/bi00222a015. [DOI] [PubMed] [Google Scholar]
  9. Egberts E., Marrink S. J., Berendsen H. J. Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J. 1994;22(6):423–436. doi: 10.1007/BF00180163. [DOI] [PubMed] [Google Scholar]
  10. Gizachew D., Van Gorkom L. C., Dance I. G., Hanna J. V., Wilson M. A. Cross-polarization dynamics in 2,6-dimethylbicyclo[3.3.1]nonane-exo-2-exo-6-diol inclusion compounds as studied by 13C magic-angle spinning nuclear magnetic resonance spectroscopy. Solid State Nucl Magn Reson. 1994 Apr;3(2):67–78. doi: 10.1016/0926-2040(94)90025-6. [DOI] [PubMed] [Google Scholar]
  11. Hirschinger J., Hervé M. Cross-polarization dynamics and spin diffusion in some aromatic compounds. Solid State Nucl Magn Reson. 1994 Jun;3(3):121–135. doi: 10.1016/0926-2040(94)90008-6. [DOI] [PubMed] [Google Scholar]
  12. Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holte L. L., Separovic F., Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids. 1996 Mar;31 (Suppl):S199–S203. doi: 10.1007/BF02637076. [DOI] [PubMed] [Google Scholar]
  14. Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
  15. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Le Guernevé C., Auger M. New approach to study fast and slow motions in lipid bilayers: application to dimyristoylphosphatidylcholine-cholesterol interactions. Biophys J. 1995 May;68(5):1952–1959. doi: 10.1016/S0006-3495(95)80372-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Litman B. J., Mitchell D. C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996 Mar;31 (Suppl):S193–S197. doi: 10.1007/BF02637075. [DOI] [PubMed] [Google Scholar]
  18. MacKay A. L. A proton NMR moment study of the gel and liquid-crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1981 Aug;35(2):301–313. doi: 10.1016/S0006-3495(81)84791-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchell D. C., Gawrisch K., Litman B. J., Salem N., Jr Why is docosahexaenoic acid essential for nervous system function? Biochem Soc Trans. 1998 Aug;26(3):365–370. doi: 10.1042/bst0260365. [DOI] [PubMed] [Google Scholar]
  20. Mitchell D. C., Litman B. J. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J. 1998 Aug;75(2):896–908. doi: 10.1016/S0006-3495(98)77578-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rabinovich A. L., Ripatti P. O. On the conformational, physical properties and functions of polyunsaturated acyl chains. Biochim Biophys Acta. 1991 Aug 20;1085(1):53–62. doi: 10.1016/0005-2760(91)90231-6. [DOI] [PubMed] [Google Scholar]
  22. Stinson A. M., Wiegand R. D., Anderson R. E. Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp Eye Res. 1991 Feb;52(2):213–218. doi: 10.1016/0014-4835(91)90261-c. [DOI] [PubMed] [Google Scholar]
  23. Sundaralingam M. Discussion paper: molecular structures and conformations of the phospholipids and sphingomyelins. Ann N Y Acad Sci. 1972 Jun 20;195:324–355. [PubMed] [Google Scholar]
  24. Tekely P., Gérardy V., Palmas P., Canet D., Retournard A. Measurement of Hartmann-Hahn cross-polarization dynamics with quenching of proton T1 rho relaxation dependence. Solid State Nucl Magn Reson. 1995 Aug;4(6):361–367. doi: 10.1016/0926-2040(95)00018-l. [DOI] [PubMed] [Google Scholar]
  25. Wiedmann T. S., Pates R. D., Beach J. M., Salmon A., Brown M. F. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry. 1988 Aug 23;27(17):6469–6474. doi: 10.1021/bi00417a041. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES