Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):975–981. doi: 10.1016/S0006-3495(00)76351-X

Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly.

A B Steel 1, R L Levicky 1, T M Herne 1, M J Tarlov 1
PMCID: PMC1300993  PMID: 10920027

Abstract

This report investigates the effect of DNA length and the presence of an anchoring group on the assembly of presynthesized oligonucleotides at a gold surface. The work seeks to advance fundamental insight into issues that impact the structure and behavior of surface-immobilized DNA layers, as in, for instance, DNA microarray and biosensor devices. The present study contrasts immobilization of single-stranded DNA (ssDNA) containing a terminal, 5' hexanethiol anchoring group with that of unfunctionalized oligonucleotides for lengths from 8 to 48 bases. Qualitatively, the results indicate that the thiol anchoring group strongly enhances oligonucleotide immobilization, but that the enhancement is reduced for longer strand lengths. Interestingly, examination of the probe coverage as a function of strand length suggests that adsorbed thiol-ssDNA oligonucleotides shorter than 24 bases tend to organize in end-tethered, highly extended configurations for which the long-term surface coverage is largely independent of oligonucleotide length. For strands longer than 24 bases, the surface coverage begins to decrease notably with probe length. The decrease is consistent with a less ordered arrangement of the DNA chains, presumably reflecting increasingly polymeric behavior.

Full Text

The Full Text of this article is available as a PDF (113.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamdad C. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA. Biophys J. 1998 Oct;75(4):1997–2003. doi: 10.1016/S0006-3495(98)77641-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bamdad C. The use of variable density self-assembled monolayers to probe the structure of a target molecule. Biophys J. 1998 Oct;75(4):1989–1996. doi: 10.1016/S0006-3495(98)77640-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheung V. G., Morley M., Aguilar F., Massimi A., Kucherlapati R., Childs G. Making and reading microarrays. Nat Genet. 1999 Jan;21(1 Suppl):15–19. doi: 10.1038/4439. [DOI] [PubMed] [Google Scholar]
  4. Duggan D. J., Bittner M., Chen Y., Meltzer P., Trent J. M. Expression profiling using cDNA microarrays. Nat Genet. 1999 Jan;21(1 Suppl):10–14. doi: 10.1038/4434. [DOI] [PubMed] [Google Scholar]
  5. Gingeras T. R., Kwoh D. Y., Davis G. R. Hybridization properties of immobilized nucleic acids. Nucleic Acids Res. 1987 Jul 10;15(13):5373–5390. doi: 10.1093/nar/15.13.5373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kelley S. O., Barton J. K., Jackson N. M., Hill M. G. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem. 1997 Jan-Feb;8(1):31–37. doi: 10.1021/bc960070o. [DOI] [PubMed] [Google Scholar]
  7. Lipshutz R. J., Fodor S. P., Gingeras T. R., Lockhart D. J. High density synthetic oligonucleotide arrays. Nat Genet. 1999 Jan;21(1 Suppl):20–24. doi: 10.1038/4447. [DOI] [PubMed] [Google Scholar]
  8. Mir K. U., Southern E. M. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat Biotechnol. 1999 Aug;17(8):788–792. doi: 10.1038/11732. [DOI] [PubMed] [Google Scholar]
  9. Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor S. P. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5022–5026. doi: 10.1073/pnas.91.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  11. Rekesh D., Lyubchenko Y., Shlyakhtenko L. S., Lindsay S. M. Scanning tunneling microscopy of mercapto-hexyl-oligonucleotides attached to gold. Biophys J. 1996 Aug;71(2):1079–1086. doi: 10.1016/S0006-3495(96)79308-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Southern E. M., Case-Green S. C., Elder J. K., Johnson M., Mir K. U., Wang L., Williams J. C. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 1994 Apr 25;22(8):1368–1373. doi: 10.1093/nar/22.8.1368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Southern E., Mir K., Shchepinov M. Molecular interactions on microarrays. Nat Genet. 1999 Jan;21(1 Suppl):5–9. doi: 10.1038/4429. [DOI] [PubMed] [Google Scholar]
  14. Steel A. B., Herne T. M., Tarlov M. J. Electrochemical quantitation of DNA immobilized on gold. Anal Chem. 1998 Nov 15;70(22):4670–4677. doi: 10.1021/ac980037q. [DOI] [PubMed] [Google Scholar]
  15. Ulman Abraham. Formation and Structure of Self-Assembled Monolayers. Chem Rev. 1996 Jun 20;96(4):1533–1554. doi: 10.1021/cr9502357. [DOI] [PubMed] [Google Scholar]
  16. Williams J. C., Case-Green S. C., Mir K. U., Southern E. M. Studies of oligonucleotide interactions by hybridisation to arrays: the influence of dangling ends on duplex yield. Nucleic Acids Res. 1994 Apr 25;22(8):1365–1367. doi: 10.1093/nar/22.8.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES