Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1016–1022. doi: 10.1016/S0006-3495(00)76355-7

Nonideality and the nucleation of sickle hemoglobin.

M Ivanova 1, R Jasuja 1, S Kwong 1, R W Briehl 1, F A Ferrone 1
PMCID: PMC1300997  PMID: 10920031

Abstract

The homogeneous and heterogeneous nucleation kinetics of sickle hemoglobin (HbS) have been studied for various degrees of solution crowding by substitution of cross-linked hemoglobin A, amounting to 50% of the total hemoglobin. By cross-linking hemoglobin A, hybrid formation between hemoglobin A and hemoglobin S was prevented, thus simplifying the analysis of the results. Polymerization was induced by laser photolysis, and homogeneous nucleation kinetics were determined by observation of the stochastic behavior of the onset of light scattering. Heterogeneous nucleation was determined by observing the exponential growth of the progress curves, monitored by light scattering. At concentrations between 4 and 5 mM tetramer (i.e., approximately 30 g/dl), the substitution of 50% HbA for HbS slows the reaction by a factor of 10(3) to 10(4). Using scaled particle theory to account for the crowding of HbA, the observed decrease in the homogeneous nucleation rate was accurately predicted, with no variation of parameters required. Heterogeneous nucleation, on the other hand, is not well described in the present formulation, and the theory for this process appears to require modification of the way in which nonideality is introduced. Nonetheless, the accuracy of the homogeneous nucleation description suggests that such an approach may be useful for other assembly processes that occur in a crowded intracellular milieu.

Full Text

The Full Text of this article is available as a PDF (103.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benesch R. E., Kwong S. Hemoglobin tetramers stabilized by a single intramolecular cross-link. J Protein Chem. 1991 Oct;10(5):503–510. doi: 10.1007/BF01025478. [DOI] [PubMed] [Google Scholar]
  2. Bookchin R. M., Balazs T., Wang Z., Josephs R., Lew V. L. Polymer structure and solubility of deoxyhemoglobin S in the presence of high concentrations of volume-excluding 70-kDa dextran. Effects of non-s hemoglobins and inhibitors. J Biol Chem. 1999 Mar 5;274(10):6689–6697. doi: 10.1074/jbc.274.10.6689. [DOI] [PubMed] [Google Scholar]
  3. Cao Z., Ferrone F. A. Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method. Biophys J. 1997 Jan;72(1):343–352. doi: 10.1016/S0006-3495(97)78673-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charache S., Terrin M. L., Moore R. D., Dover G. J., Barton F. B., Eckert S. V., McMahon R. P., Bonds D. R. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995 May 18;332(20):1317–1322. doi: 10.1056/NEJM199505183322001. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee R., Welty E. V., Walder R. Y., Pruitt S. L., Rogers P. H., Arnone A., Walder J. A. Isolation and characterization of a new hemoglobin derivative cross-linked between the alpha chains (lysine 99 alpha 1----lysine 99 alpha 2). J Biol Chem. 1986 Jul 25;261(21):9929–9937. [PubMed] [Google Scholar]
  6. Cuneo P., Magri E., Verzola A., Grazi E. 'Macromolecular crowding' is a primary factor in the organization of the cytoskeleton. Biochem J. 1992 Jan 15;281(Pt 2):507–512. doi: 10.1042/bj2810507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  8. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol. 1985 Jun 25;183(4):591–610. doi: 10.1016/0022-2836(85)90174-3. [DOI] [PubMed] [Google Scholar]
  9. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
  10. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  11. Kulp D. T., Herzfeld J. Crowding-induced organization of cytoskeletal elements. III. Spontaneous bundling and sorting of self-assembled filaments with different flexibilities. Biophys Chem. 1995 Dec;57(1):93–102. doi: 10.1016/0301-4622(95)00050-8. [DOI] [PubMed] [Google Scholar]
  12. Madden T. L., Herzfeld J. Crowding-induced organization of cytoskeletal elements: I. Spontaneous demixing of cytosolic proteins and model filaments to form filament bundles. Biophys J. 1993 Sep;65(3):1147–1154. doi: 10.1016/S0006-3495(93)81144-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Madden T. L., Herzfeld J. Crowding-induced organization of cytoskeletal elements: II. Dissolution of spontaneously formed filament bundles by capping proteins. J Cell Biol. 1994 Jul;126(1):169–174. doi: 10.1083/jcb.126.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mirchev R., Ferrone F. A. The structural link between polymerization and sickle cell disease. J Mol Biol. 1997 Feb 7;265(5):475–479. doi: 10.1006/jmbi.1996.0759. [DOI] [PubMed] [Google Scholar]
  15. Ross P. D., Minton A. P. Analysis of non-ideal behavior in concentrated hemoglobin solutions. J Mol Biol. 1977 May 25;112(3):437–452. doi: 10.1016/s0022-2836(77)80191-5. [DOI] [PubMed] [Google Scholar]
  16. Samuel R. E., Salmon E. D., Briehl R. W. Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature. 1990 Jun 28;345(6278):833–835. doi: 10.1038/345833a0. [DOI] [PubMed] [Google Scholar]
  17. Sunshine H. R., Hofrichter J., Eaton W. A. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J Mol Biol. 1979 Oct 9;133(4):435–467. doi: 10.1016/0022-2836(79)90402-9. [DOI] [PubMed] [Google Scholar]
  18. Szabo A. Fluctuations in the polymerization of sickle hemoglobin. A simple analytic model. J Mol Biol. 1988 Feb 5;199(3):539–542. doi: 10.1016/0022-2836(88)90624-9. [DOI] [PubMed] [Google Scholar]
  19. Zimmerman S. B., Minton A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22:27–65. doi: 10.1146/annurev.bb.22.060193.000331. [DOI] [PubMed] [Google Scholar]
  20. Zimmerman S. B., Trach S. O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol. 1991 Dec 5;222(3):599–620. doi: 10.1016/0022-2836(91)90499-v. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES