Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1023–1029. doi: 10.1016/S0006-3495(00)76356-9

Molecular dynamics of hinge-bending motion of IgG vanishing with hydrolysis by papain.

Y Hayashi 1, N Miura 1, J Isobe 1, N Shinyashiki 1, S Yagihara 1
PMCID: PMC1300998  PMID: 10920032

Abstract

We have performed dielectric relaxation measurements via a time domain reflectometry (TDR) method to study dynamic behaviors of the segmental flexibility of immunoglobulin G (IgG) in aqueous solution without antigen binding. In general, an intermediate relaxation process due to bound water is observed around 100 MHz at 25 degrees C for common proteins between two relaxation processes due to overall rotation and reorientation of free water. However, the intermediate process observed around 6 MHz for IgG was due to both bound water and hinge-bending motion. The apparent activation energy of 33 kJ/mol was larger than 27 kJ/mol for only bound water, and the relaxation strength was about five times as large as expected for bound water. The shape of the relaxation curve was very broad and asymmetric. These characteristic differences arising from the hinge-bending motion of IgG disappeared for fragments decomposed from IgG hydrolyzed by papain, since the hinge-bending motion did not exist in this case. We have separated the relaxation processes due to hinge-bending motion and bound water for IgG and obtained the Fab-Fab angle of IgG as about 130 degrees by Kirkwood's correlation parameter and the activation energy of 34 kJ/mol for hinge-bending motion.

Full Text

The Full Text of this article is available as a PDF (105.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arata Y., Honzawa M., Shimizu A. Proton nuclear magnetic resonance studies of human immunoglobulins: conformation of the hinge region of the IgG1 immunoglobulin. Biochemistry. 1980 Oct 28;19(22):5130–5135. doi: 10.1021/bi00563a030. [DOI] [PubMed] [Google Scholar]
  2. Arnold G. E., Ornstein R. L. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes. Biopolymers. 1997 Apr 15;41(5):533–544. doi: 10.1002/(SICI)1097-0282(19970415)41:5<533::AID-BIP5>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  3. Artymiuk P. J., Blake C. C., Grace D. E., Oatley S. J., Phillips D. C., Sternberg M. J. Crystallographic studies of the dynamic properties of lysozyme. Nature. 1979 Aug 16;280(5723):563–568. doi: 10.1038/280563a0. [DOI] [PubMed] [Google Scholar]
  4. Bernstein B. E., Michels P. A., Hol W. G. Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature. 1997 Jan 16;385(6613):275–278. doi: 10.1038/385275a0. [DOI] [PubMed] [Google Scholar]
  5. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  6. Dobson C. M. Protein conformation. Hinge-bending and folding. Nature. 1990 Nov 15;348(6298):198–199. doi: 10.1038/348198a0. [DOI] [PubMed] [Google Scholar]
  7. FEINSTEIN A., ROWE A. J. MOLECULAR MECHANISM OF FORMATION OF AN ANTIGEN-ANTIBODY COMPLEX. Nature. 1965 Jan 9;205:147–149. doi: 10.1038/205147a0. [DOI] [PubMed] [Google Scholar]
  8. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  9. Grant E. H. Dielectric dispersion in bovine serum albumen. J Mol Biol. 1966 Aug;19(1):133–139. doi: 10.1016/s0022-2836(66)80055-4. [DOI] [PubMed] [Google Scholar]
  10. Hanson D. C., Yguerabide J., Schumaker V. N. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation. Biochemistry. 1981 Nov 24;20(24):6842–6852. doi: 10.1021/bi00527a016. [DOI] [PubMed] [Google Scholar]
  11. Karplus M., Petsko G. A. Molecular dynamics simulations in biology. Nature. 1990 Oct 18;347(6294):631–639. doi: 10.1038/347631a0. [DOI] [PubMed] [Google Scholar]
  12. Käiväräinen A. I., Nezlin R. S. Evidence for mobility of immunoglobulin domains obtained by spin-label method. Biochem Biophys Res Commun. 1976 Jan 12;68(1):270–276. doi: 10.1016/0006-291x(76)90039-5. [DOI] [PubMed] [Google Scholar]
  13. Li Y. C., Montelione G. T. Human type-alpha transforming growth factor undergoes slow conformational exchange between multiple backbone conformations as characterized by nitrogen-15 relaxation measurements. Biochemistry. 1995 Feb 28;34(8):2408–2423. doi: 10.1021/bi00008a003. [DOI] [PubMed] [Google Scholar]
  14. McCammon J. A., Karplus M. Internal motions of antibody molecules. Nature. 1977 Aug 25;268(5622):765–766. doi: 10.1038/268765a0. [DOI] [PubMed] [Google Scholar]
  15. Mchaourab H. S., Oh K. J., Fang C. J., Hubbell W. L. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. Biochemistry. 1997 Jan 14;36(2):307–316. doi: 10.1021/bi962114m. [DOI] [PubMed] [Google Scholar]
  16. Metzger H. Effect of antigen binding on the properties of antibody. Adv Immunol. 1974;18:169–207. doi: 10.1016/s0065-2776(08)60310-7. [DOI] [PubMed] [Google Scholar]
  17. Miki M., Kouyama T. Domain motion in actin observed by fluorescence resonance energy transfer. Biochemistry. 1994 Aug 23;33(33):10171–10177. doi: 10.1021/bi00199a045. [DOI] [PubMed] [Google Scholar]
  18. Nicholson L. K., Kay L. E., Baldisseri D. M., Arango J., Young P. E., Bax A., Torchia D. A. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry. 1992 Jun 16;31(23):5253–5263. doi: 10.1021/bi00138a003. [DOI] [PubMed] [Google Scholar]
  19. Parak F., Frolov E. N., Mössbauer R. L., Goldanskii V. I. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol. 1981 Feb 5;145(4):825–833. doi: 10.1016/0022-2836(81)90317-x. [DOI] [PubMed] [Google Scholar]
  20. Roux K. H., Strelets L., Michaelsen T. E. Flexibility of human IgG subclasses. J Immunol. 1997 Oct 1;159(7):3372–3382. [PubMed] [Google Scholar]
  21. Shinyashiki N., Asaka N., Mashimo S., Yagihara S., Sasaki N. Microwave dielectric study on hydration of moist collagen. 1990 Jul-Aug 5Biopolymers. 29(8-9):1185–1191. doi: 10.1002/bip.360290809. [DOI] [PubMed] [Google Scholar]
  22. Silverton E. W., Navia M. A., Davies D. R. Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5140–5144. doi: 10.1073/pnas.74.11.5140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suzuki M., Shigematsu J., Fukunishi Y., Harada Y., Yanagida T., Kodama T. Coupling of protein surface hydrophobicity change to ATP hydrolysis by myosin motor domain. Biophys J. 1997 Jan;72(1):18–23. doi: 10.1016/S0006-3495(97)78643-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sweet R. M., Wright H. T., Janin J., Chothia C. H., Blow D. M. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-A resolution. Biochemistry. 1974 Sep 24;13(20):4212–4228. doi: 10.1021/bi00717a024. [DOI] [PubMed] [Google Scholar]
  25. Utsumi S. Stepwise cleavage of rabbit immunoglobulin G by papain and isolation of four types of biologically active Fc fragments. Biochem J. 1969 Apr;112(3):343–355. doi: 10.1042/bj1120343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Valentine R. C., Green N. M. Electron microscopy of an antibody-hapten complex. J Mol Biol. 1967 Aug 14;27(3):615–617. doi: 10.1016/0022-2836(67)90063-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES