Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1066–1073. doi: 10.1016/S0006-3495(00)76360-0

Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface.

A H Clayton 1, W H Sawyer 1
PMCID: PMC1301002  PMID: 10920036

Abstract

The amphipathic helix plays a key role in many membrane-associating peptides and proteins. The dynamics of helices on membrane surfaces might be of importance to their function. The fluorescence anisotropy decay of tryptophan is a sensitive indicator of local, segmental, and global dynamics within a peptide or protein. We describe the use of frequency domain dynamic depolarization measurements to determine the site-specific tryptophan dynamics of single tryptophan amphipathic peptides bound to a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide that is known to associate at the interface of phospholipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. Association of the peptides with egg phosphatidylcholine vesicles results in complex behavior of both the tryptophan intensity decay and the anisotropy decay. The anisotropy decays were biphasic and were fitted to an associated model where each lifetime component in the intensity decay is associated with a particular rotational correlation time from the anisotropy decay. In contrast, an unassociated model where all components of the intensity decay share common rotational modes was unable to provide an adequate fit to the data. Two correlation times were resolved from the associated analysis: one whose contribution to the anisotropy decay was dependent on the exposure of the tryptophan to the aqueous phase, and the other whose contribution reflected the position of the tryptophan in the sequence. The results are compared with existing x-ray structural data and molecular dynamics simulations of membrane-incorporated peptides.

Full Text

The Full Text of this article is available as a PDF (82.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almeida F. C., Opella S. J. fd coat protein structure in membrane environments: structural dynamics of the loop between the hydrophobic trans-membrane helix and the amphipathic in-plane helix. J Mol Biol. 1997 Jul 18;270(3):481–495. doi: 10.1006/jmbi.1997.1114. [DOI] [PubMed] [Google Scholar]
  3. Beechem J. M., Knutson J. R., Brand L. Global analysis of multiple dye fluorescence anisotropy experiments on proteins. Biochem Soc Trans. 1986 Oct;14(5):832–835. doi: 10.1042/bst0140832. [DOI] [PubMed] [Google Scholar]
  4. Belford G. G., Belford R. L., Weber G. Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1392–1393. doi: 10.1073/pnas.69.6.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Benedetti E., Morelli G., Némethy G., Scheraga H. A. Statistical and energetic analysis of side-chain conformations in oligopeptides. Int J Pept Protein Res. 1983 Jul;22(1):1–15. doi: 10.1111/j.1399-3011.1983.tb02062.x. [DOI] [PubMed] [Google Scholar]
  6. Chang M. C., Fleming G. R., Scanu A. M., Yang N. C. A high resolution fluorescence decay and depolarization study of human plasma apolipoproteins. Photochem Photobiol. 1988 Mar;47(3):345–355. doi: 10.1111/j.1751-1097.1988.tb02736.x. [DOI] [PubMed] [Google Scholar]
  7. Chen R. F., Knutson J. R., Ziffer H., Porter D. Fluorescence of tryptophan dipeptides: correlations with the rotamer model. Biochemistry. 1991 May 28;30(21):5184–5195. doi: 10.1021/bi00235a011. [DOI] [PubMed] [Google Scholar]
  8. Clayton A. H., Sawyer W. H. The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. Eur Biophys J. 1999;28(2):133–141. doi: 10.1007/s002490050192. [DOI] [PubMed] [Google Scholar]
  9. Clayton A. H., Sawyer W. H. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Biophys J. 1999 Jun;76(6):3235–3242. doi: 10.1016/S0006-3495(99)77475-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dornmair K., Jähnig F. Internal dynamics of lactose permease. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9827–9831. doi: 10.1073/pnas.86.24.9827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Döring K., Beck W., Konermann L., Jähnig F. The use of a long-lifetime component of tryptophan to detect slow orientational fluctuations of proteins. Biophys J. 1997 Jan;72(1):326–334. doi: 10.1016/S0006-3495(97)78671-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frey S., Tamm L. K. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Biochem J. 1990 Dec 15;272(3):713–719. doi: 10.1042/bj2720713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gratton E., Jameson D. M., Hall R. D. Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng. 1984;13:105–124. doi: 10.1146/annurev.bb.13.060184.000541. [DOI] [PubMed] [Google Scholar]
  14. Hristova K., Wimley W. C., Mishra V. K., Anantharamiah G. M., Segrest J. P., White S. H. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol. 1999 Jul 2;290(1):99–117. doi: 10.1006/jmbi.1999.2840. [DOI] [PubMed] [Google Scholar]
  15. John E., Jähnig F. Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay. Biophys J. 1988 Nov;54(5):817–827. doi: 10.1016/S0006-3495(88)83019-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kinosita K., Jr, Ikegami A., Kawato S. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J. 1982 Feb;37(2):461–464. doi: 10.1016/S0006-3495(82)84692-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ladokhin A. S., Selsted M. E., White S. H. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J. 1997 Feb;72(2 Pt 1):794–805. doi: 10.1016/s0006-3495(97)78713-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lakowicz J. R., Laczko G., Gryczynski I., Cherek H. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry. J Biol Chem. 1986 Feb 15;261(5):2240–2245. [PubMed] [Google Scholar]
  19. Maliwal B. P., Hermetter A., Lakowicz J. R. A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: internal motions of N-methylanthraniloyl melittin. Biochim Biophys Acta. 1986 Sep 26;873(2):173–181. doi: 10.1016/0167-4838(86)90043-9. [DOI] [PubMed] [Google Scholar]
  20. Miick S. M., Casteel K. M., Millhauser G. L. Experimental molecular dynamics of an alanine-based helical peptide determined by spin label electron spin resonance. Biochemistry. 1993 Aug 10;32(31):8014–8021. doi: 10.1021/bi00082a024. [DOI] [PubMed] [Google Scholar]
  21. Millar D. P. Time-resolved fluorescence spectroscopy. Curr Opin Struct Biol. 1996 Oct;6(5):637–642. doi: 10.1016/s0959-440x(96)80030-3. [DOI] [PubMed] [Google Scholar]
  22. Peng K., Visser A. J., van Hoek A., Wolfs C. J., Hemminga M. A. Analysis of time-resolved fluorescence anisotropy in lipid-protein systems. II. Application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilayers. Eur Biophys J. 1990;18(5):285–293. doi: 10.1007/BF00188041. [DOI] [PubMed] [Google Scholar]
  23. Tieleman D. P., Forrest L. R., Sansom M. S., Berendsen H. J. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry. 1998 Dec 15;37(50):17554–17561. doi: 10.1021/bi981802y. [DOI] [PubMed] [Google Scholar]
  24. Valeur B., Weber G. Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands. Photochem Photobiol. 1977 May;25(5):441–444. doi: 10.1111/j.1751-1097.1977.tb09168.x. [DOI] [PubMed] [Google Scholar]
  25. Vogel H., Nilsson L., Rigler R., Voges K. P., Jung G. Structural fluctuations of a helical polypeptide traversing a lipid bilayer. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5067–5071. doi: 10.1073/pnas.85.14.5067. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES