Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1085–1094. doi: 10.1016/s0006-3495(00)76362-4

Comparison of EPR-visible Cu(2+) sites in pMMO from Methylococcus capsulatus (Bath) and Methylomicrobium album BG8.

S S Lemos 1, M L Perille Collins 1, S S Eaton 1, G R Eaton 1, W E Antholine 1
PMCID: PMC1301004  PMID: 10920038

Abstract

X-band (9.1 GHz) and S-band (3.4 GHz) electron paramagnetic resonance (EPR) spectra for particulate methane monooxygenase (pMMO) in whole cells from Methylococcus capsulatus (Bath) grown on (63)Cu and (15)N were obtained and compared with previously reported spectra for pMMO from Methylomicrobium album BG8. For both M. capsulatus (Bath) and M. album BG8, two nearly identical Cu(2+) EPR signals with resolved hyperfine coupling to four nitrogens are observed. The EPR parameters for pMMO from M. capsulatus (Bath) (g( parallel) = 2.244, A( parallel) = 185 G, and A(N) = 19 G for signal one; g( parallel) = 2.246, A( parallel) = 180 G, and A(N) = 19 G for signal two) and for pMMO from M. album BG8 (g( parallel) = 2.243, A( parallel) = 180 G, and A(N) = 18 G for signal one; g( parallel) = 2. 251, A( parallel) = 180 G, and A(N) = 18 G for signal two) are very similar and are characteristic of type 2 Cu(2+) in a square planar or square pyramidal geometry. In three-pulse electron spin echo envelope modulation (ESEEM) data for natural-abundance samples, nitrogen quadrupolar frequencies due to the distant nitrogens of coordinated histidine imidazoles were observed. The intensities of the quadrupolar combination bands indicate that there are three or four coordinated imidazoles, which implies that most, if not all, of the coordinated nitrogens detected in the continuous wave spectra are from histidine imidazoles.

Full Text

The Full Text of this article is available as a PDF (118.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Cohen L., McCarty P. L., Boulygina E., Hanson R. S., Brusseau G. A., Tsien H. C. Characterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform. Appl Environ Microbiol. 1992 Jun;58(6):1886–1893. doi: 10.1128/aem.58.6.1886-1893.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arps P. J., Speer B. S., Kim Y. M., Lidstrom M. E. The mxaAKL genes of Methylobacter albus BG8. Microbiology. 1995 Nov;141(Pt 11):2995–3004. doi: 10.1099/13500872-141-11-2995. [DOI] [PubMed] [Google Scholar]
  3. Berson O., Lidstrom M. E. Cloning and characterization of corA, a gene encoding a copper-repressible polypeptide in the type I methanotroph, Methylomicrobium albus BG8. FEMS Microbiol Lett. 1997 Mar 15;148(2):169–174. doi: 10.1111/j.1574-6968.1997.tb10284.x. [DOI] [PubMed] [Google Scholar]
  4. Brantner C. A., Buchholz L. A., Remsen C. C., Collins M. L. Isolation of intracytoplasmic membrane from the methanotrophic bacterium Methylomicrobium album BG8. Curr Microbiol. 2000 Feb;40(2):132–134. doi: 10.1007/s002849910026. [DOI] [PubMed] [Google Scholar]
  5. Brown K., Tegoni M., Prudêncio M., Pereira A. S., Besson S., Moura J. J., Moura I., Cambillau C. A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol. 2000 Mar;7(3):191–195. doi: 10.1038/73288. [DOI] [PubMed] [Google Scholar]
  6. Cheng Y. S., Halsey J. L., Fode K. A., Remsen C. C., Collins M. L. Detection of methanotrophs in groundwater by PCR. Appl Environ Microbiol. 1999 Feb;65(2):648–651. doi: 10.1128/aem.65.2.648-651.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chistoserdova L., Kuhn M., Lidstrom M. E. Identification of a promoter region for mxaF (moxF) from the type I methanotroph, Methylobacter albus BG8. FEMS Microbiol Lett. 1994 Sep 1;121(3):343–348. doi: 10.1111/j.1574-6968.1994.tb07124.x. [DOI] [PubMed] [Google Scholar]
  8. Collins M. L., Buchholz L. A., Remsen C. C. Effect of Copper on Methylomonas albus BG8. Appl Environ Microbiol. 1991 Apr;57(4):1261–1264. doi: 10.1128/aem.57.4.1261-1264.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dikanov S., Felli I., Viezzoli M. S., Spoyalov A., Hüttermann J. X-band ESEEM spectroscopy of 15N substituted native and inhibitor-bound superoxide dismutase. Hyperfine couplings with remote nitrogen of histidine ligands. FEBS Lett. 1994 May 23;345(1):55–60. doi: 10.1016/0014-5793(94)00406-4. [DOI] [PubMed] [Google Scholar]
  10. Fee J. A., Peisach J., Mims W. B. Superoxide dismutase. Examination of the metal binding sites by electron spin echo spectroscopy. J Biol Chem. 1981 Feb 25;256(4):1910–1914. [PubMed] [Google Scholar]
  11. Hanson R. S., Hanson T. E. Methanotrophic bacteria. Microbiol Rev. 1996 Jun;60(2):439–471. doi: 10.1128/mr.60.2.439-471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holm Richard H., Kennepohl Pierre, Solomon Edward I. Structural and Functional Aspects of Metal Sites in Biology. Chem Rev. 1996 Nov 7;96(7):2239–2314. doi: 10.1021/cr9500390. [DOI] [PubMed] [Google Scholar]
  13. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett. 1995 Oct 15;132(3):203–208. doi: 10.1016/0378-1097(95)00311-r. [DOI] [PubMed] [Google Scholar]
  14. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  15. Lipscomb J. D. Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol. 1994;48:371–399. doi: 10.1146/annurev.mi.48.100194.002103. [DOI] [PubMed] [Google Scholar]
  16. Little C. D., Palumbo A. V., Herbes S. E., Lidstrom M. E., Tyndall R. L., Gilmer P. J. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol. 1988 Apr;54(4):951–956. doi: 10.1128/aem.54.4.951-956.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lo C. M., Fan S. T., Liu C. L., Lo R. J., Lai C. L., Lau G. K., Chan J. K., Ng I. O., Wong J. Five-year experience with the development of a liver transplant program in Hong Kong. Transplant Proc. 1998 Nov;30(7):3247–3248. doi: 10.1016/s0041-1345(98)01013-6. [DOI] [PubMed] [Google Scholar]
  18. Lontoh S., Semrau J. D. Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase. Appl Environ Microbiol. 1998 Mar;64(3):1106–1114. doi: 10.1128/aem.64.3.1106-1114.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lu J., Bender C. J., McCracken J., Peisach J., Severns J. C., McMillin D. R. Pulsed EPR studies of the type 2 copper binding site in the mercury derivative of laccase. Biochemistry. 1992 Jul 14;31(27):6265–6272. doi: 10.1021/bi00142a014. [DOI] [PubMed] [Google Scholar]
  20. Nguyen H. H., Elliott S. J., Yip J. H., Chan S. I. The particulate methane monooxygenase from methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem. 1998 Apr 3;273(14):7957–7966. doi: 10.1074/jbc.273.14.7957. [DOI] [PubMed] [Google Scholar]
  21. Nguyen H. H., Shiemke A. K., Jacobs S. J., Hales B. J., Lidstrom M. E., Chan S. I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1994 May 27;269(21):14995–15005. [PubMed] [Google Scholar]
  22. Oldenhuis R., Oedzes J. Y., van der Waarde J. J., Janssen D. B. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl Environ Microbiol. 1991 Jan;57(1):7–14. doi: 10.1128/aem.57.1.7-14.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rakhit G., Antholine W. E., Froncisz W., Hyde J. S., Pilbrow J. R., Sinclair G. R., Sarkar B. Direct evidence of nitrogen coupling in the copper(II) complex of bovine serum albumin by S-band electron spin resonance technique. J Inorg Biochem. 1985 Nov;25(3):217–224. doi: 10.1016/0162-0134(85)80015-5. [DOI] [PubMed] [Google Scholar]
  24. Rosenzweig A. C., Frederick C. A., Lippard S. J., Nordlund P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature. 1993 Dec 9;366(6455):537–543. doi: 10.1038/366537a0. [DOI] [PubMed] [Google Scholar]
  25. Semrau J. D., Chistoserdov A., Lebron J., Costello A., Davagnino J., Kenna E., Holmes A. J., Finch R., Murrell J. C., Lidstrom M. E. Particulate methane monooxygenase genes in methanotrophs. J Bacteriol. 1995 Jun;177(11):3071–3079. doi: 10.1128/jb.177.11.3071-3079.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Semrau J. D., Zolandz D., Lidstrom M. E., Chan S. I. The role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function. J Inorg Biochem. 1995 Jun;58(4):235–244. doi: 10.1016/0162-0134(94)00056-g. [DOI] [PubMed] [Google Scholar]
  27. Shiemke A. K., Cook S. A., Miley T., Singleton P. Detergent solubilization of membrane-bound methane monooxygenase requires plastoquinol analogs as electron donors. Arch Biochem Biophys. 1995 Aug 20;321(2):421–428. doi: 10.1006/abbi.1995.1413. [DOI] [PubMed] [Google Scholar]
  28. Takeguchi M., Miyakawa K., Okura I. Properties of the membranes containing the particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biometals. 1998 Sep;11(3):229–234. doi: 10.1023/a:1009278216452. [DOI] [PubMed] [Google Scholar]
  29. Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  30. Wilce M. C., Dooley D. M., Freeman H. C., Guss J. M., Matsunami H., McIntire W. S., Ruggiero C. E., Tanizawa K., Yamaguchi H. Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry. 1997 Dec 23;36(51):16116–16133. doi: 10.1021/bi971797i. [DOI] [PubMed] [Google Scholar]
  31. Yuan H., Collins M. L., Antholine W. E. Concentration of Cu, EPR-detectable Cu, and formation of cupric-ferrocyanide in membranes with pMMO. J Inorg Biochem. 1998 Dec;72(3-4):179–185. doi: 10.1016/s0162-0134(98)10078-8. [DOI] [PubMed] [Google Scholar]
  32. Yuan H., Collins M. L., Antholine W. E. Type 2 Cu2+ in pMMO from Methylomicrobium album BG8. Biophys J. 1999 Apr;76(4):2223–2229. doi: 10.1016/S0006-3495(99)77378-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zahn J. A., DiSpirito A. A. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol. 1996 Feb;178(4):1018–1029. doi: 10.1128/jb.178.4.1018-1029.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zhou Y., Bowler B. E., Eaton G. R., Eaton S. S. Electron spin lattice relaxation rates for S = 12 molecular species in glassy matrices or magnetically dilute solids at temperatures between 10 and 300 K. J Magn Reson. 1999 Jul;139(1):165–174. doi: 10.1006/jmre.1999.1763. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES