Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Aug;79(2):1146–1154. doi: 10.1016/S0006-3495(00)76368-5

Chain-selective isotopic labeling for NMR studies of large multimeric proteins: application to hemoglobin.

V Simplaceanu 1, J A Lukin 1, T Y Fang 1, M Zou 1, N T Ho 1, C Ho 1
PMCID: PMC1301010  PMID: 10920044

Abstract

Multidimensional, multinuclear NMR has the potential to elucidate the mechanisms of allostery and cooperativity in multimeric proteins under near-physiological conditions. However, NMR studies of proteins made up of non-equivalent subunits face the problem of severe resonance overlap, which can prevent the unambiguous assignment of resonances, a necessary step in interpreting the spectra. We report the application of a chain-selective labeling technique, in which one type of subunit is labeled at a time, to carbonmonoxy-hemoglobin A (HbCO A). This labeling method can be used to extend previous resonance assignments of key amino acid residues, which are important to the physiological function of hemoglobin. Among these amino acid residues are the surface histidyls, which account for the majority of the Bohr effect. In the present work, we report the results of two-dimensional heteronuclear multiple quantum coherence (HMQC) experiments performed on recombinant (15)N-labeled HbCO A. In addition to the C2-proton (H epsilon(1)) chemical shifts, these spectra also reveal the corresponding C4-proton (H delta(2)) resonances, correlated with the N epsilon(2) and N delta(1) chemical shifts of all 13 surface histidines per alpha beta dimer. The HMQC spectrum also allows the assignment of the H delta(1), H epsilon(1), and N epsilon(1) resonances of all three tryptophan residues per alpha beta dimer in HbCO A. These results indicate that heteronuclear NMR, used with chain-selective isotopic labeling, can provide resonance assignments of key regions in large, multimeric proteins, suggesting an approach to elucidating the solution structure of hemoglobin, a protein with molecular weight 64.5 kDa.

Full Text

The Full Text of this article is available as a PDF (220.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asakura T., Adachi K., Wiley J. S., Fung L. W., Ho C., Kilmartin J. V., Perutz M. F. Structure and function of haemoglobin Philly (Tyr C1 (35) beta replaced by Phe). J Mol Biol. 1976 Jun 14;104(1):185–195. doi: 10.1016/0022-2836(76)90008-5. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol Biol. 1980 Jan 15;136(2):103–128. doi: 10.1016/0022-2836(80)90308-3. [DOI] [PubMed] [Google Scholar]
  3. Blomberg F., Maurer W., Rüterjans H. Nuclear magnetic resonance investigation of 15N-labeled histidine in aqueous solution. J Am Chem Soc. 1977 Dec 7;99(25):8149–8159. doi: 10.1021/ja00467a005. [DOI] [PubMed] [Google Scholar]
  4. Briercheck D. M., Allison T. J., Richardson J. P., Ellena J. F., Wood T. C., Rule G. S. 1H, 15N and 13C resonance assignments and secondary structure determination of the RNA-binding domain of E.coli rho protein. J Biomol NMR. 1996 Dec;8(4):429–444. doi: 10.1007/BF00228145. [DOI] [PubMed] [Google Scholar]
  5. Bucci E. Preparation of isolated chains of human hemoglobin. Methods Enzymol. 1981;76:97–106. doi: 10.1016/0076-6879(81)76117-2. [DOI] [PubMed] [Google Scholar]
  6. Busch M. R., Mace J. E., Ho N. T., Ho C. Roles of the beta 146 histidyl residue in the molecular basis of the Bohr effect of hemoglobin: a proton nuclear magnetic resonance study. Biochemistry. 1991 Feb 19;30(7):1865–1877. doi: 10.1021/bi00221a020. [DOI] [PubMed] [Google Scholar]
  7. Dalvit C., Ho C. Proton nuclear Overhauser effect investigation of the heme pockets in ligated hemoglobin: conformational differences between oxy and carbonmonoxy forms. Biochemistry. 1985 Jul 2;24(14):3398–3407. doi: 10.1021/bi00335a003. [DOI] [PubMed] [Google Scholar]
  8. Dalvit C., Wright P. E. Assignment of resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of human hemoglobin alpha-chains. J Mol Biol. 1987 Mar 20;194(2):329–339. doi: 10.1016/0022-2836(87)90379-2. [DOI] [PubMed] [Google Scholar]
  9. Delaglio F., Grzesiek S., Vuister G. W., Zhu G., Pfeifer J., Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995 Nov;6(3):277–293. doi: 10.1007/BF00197809. [DOI] [PubMed] [Google Scholar]
  10. Fang T. Y., Zou M., Simplaceanu V., Ho N. T., Ho C. Assessment of roles of surface histidyl residues in the molecular basis of the Bohr effect and of beta 143 histidine in the binding of 2,3-bisphosphoglycerate in human normal adult hemoglobin. Biochemistry. 1999 Oct 5;38(40):13423–13432. doi: 10.1021/bi9911379. [DOI] [PubMed] [Google Scholar]
  11. Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
  12. Gruschus J. M., Ferretti J. A. 15N-edited three-dimensional NOESY-HMQC with water flipback: enhancement of weak labile 1H resonances of protein side chains contacting DNA. J Magn Reson. 1998 Nov;135(1):87–92. doi: 10.1006/jmre.1998.1532. [DOI] [PubMed] [Google Scholar]
  13. Ho C., Perussi J. R. Proton nuclear magnetic resonance studies of hemoglobin. Methods Enzymol. 1994;232:97–139. doi: 10.1016/0076-6879(94)32046-2. [DOI] [PubMed] [Google Scholar]
  14. Ho C. Proton nuclear magnetic resonance studies on hemoglobin: cooperative interactions and partially ligated intermediates. Adv Protein Chem. 1992;43:153–312. doi: 10.1016/s0065-3233(08)60555-0. [DOI] [PubMed] [Google Scholar]
  15. Ho C., Russu I. M. How much do we know about the Bohr effect of hemoglobin? Biochemistry. 1987 Oct 6;26(20):6299–6305. doi: 10.1021/bi00394a001. [DOI] [PubMed] [Google Scholar]
  16. Hu X., Spiro T. G. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Biochemistry. 1997 Dec 16;36(50):15701–15712. doi: 10.1021/bi971136l. [DOI] [PubMed] [Google Scholar]
  17. Looker D., Mathews A. J., Neway J. O., Stetler G. L. Expression of recombinant human hemoglobin in Escherichia coli. Methods Enzymol. 1994;231:364–374. doi: 10.1016/0076-6879(94)31025-4. [DOI] [PubMed] [Google Scholar]
  18. Martineau L., Craescu C. T. Sequential assignment of the proton NMR spectrum of isolated alpha(CO) chains from human adult hemoglobin. Eur J Biochem. 1992 Apr 15;205(2):661–670. doi: 10.1111/j.1432-1033.1992.tb16826.x. [DOI] [PubMed] [Google Scholar]
  19. Nakatsukasa T., Nomura N., Miyazaki G., Imai K., Wada Y., Ishimori K., Morishima I., Morimoto H. The artificial alpha1beta1-contact mutant hemoglobin, Hb Phe-35beta, shows only small functional abnormalities. FEBS Lett. 1998 Dec 11;441(1):93–96. doi: 10.1016/s0014-5793(98)01535-x. [DOI] [PubMed] [Google Scholar]
  20. Oh B. H., Mooberry E. S., Markley J. L. Multinuclear magnetic resonance studies of the 2Fe.2S* ferredoxin from Anabaena species strain PCC 7120. 2. Sequence-specific carbon-13 and nitrogen-15 resonance assignments of the oxidized form. Biochemistry. 1990 Apr 24;29(16):4004–4011. doi: 10.1021/bi00468a030. [DOI] [PubMed] [Google Scholar]
  21. Pelton J. G., Torchia D. A., Meadow N. D., Roseman S. Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated IIIGlc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci. 1993 Apr;2(4):543–558. doi: 10.1002/pro.5560020406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pervushin K., Riek R., Wider G., Wüthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366–12371. doi: 10.1073/pnas.94.23.12366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Russu I. M., Ho N. T., Ho C. A proton nuclear Overhauser effect investigation of the subunit interfaces in human normal adult hemoglobin. Biochim Biophys Acta. 1987 Jul 24;914(1):40–48. doi: 10.1016/0167-4838(87)90159-2. [DOI] [PubMed] [Google Scholar]
  24. Russu I. M., Wu S. S., Ho N. T., Kellogg G. W., Ho C. A proton nuclear magnetic resonance investigation of the anion Bohr effect of human normal adult hemoglobin. Biochemistry. 1989 Jun 13;28(12):5298–5306. doi: 10.1021/bi00438a057. [DOI] [PubMed] [Google Scholar]
  25. Shen T. J., Ho N. T., Simplaceanu V., Zou M., Green B. N., Tam M. F., Ho C. Production of unmodified human adult hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8108–8112. doi: 10.1073/pnas.90.17.8108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stockman B. J., Reily M. D., Westler W. M., Ulrich E. L., Markley J. L. Concerted two-dimensional NMR approaches to hydrogen-1, carbon-13, and nitrogen-15 resonance assignments in proteins. Biochemistry. 1989 Jan 10;28(1):230–236. doi: 10.1021/bi00427a032. [DOI] [PubMed] [Google Scholar]
  27. Sun D. P., Zou M., Ho N. T., Ho C. Contribution of surface histidyl residues in the alpha-chain to the Bohr effect of human normal adult hemoglobin: roles of global electrostatic effects. Biochemistry. 1997 Jun 3;36(22):6663–6673. doi: 10.1021/bi963121d. [DOI] [PubMed] [Google Scholar]
  28. Talluri S., Wagner G. An optimized 3D NOESY-HSQC. J Magn Reson B. 1996 Aug;112(2):200–205. doi: 10.1006/jmrb.1996.0132. [DOI] [PubMed] [Google Scholar]
  29. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES