Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1180–1187. doi: 10.1016/S0006-3495(00)76372-7

Association entropy in adsorption processes.

N Ben-Tal 1, B Honig 1, C K Bagdassarian 1, A Ben-Shaul 1
PMCID: PMC1301014  PMID: 10968982

Abstract

The association of two species to form a bound complex, e.g., the binding of a ligand to a protein or the adsorption of a peptide on a lipid membrane, involves an entropy loss, reflecting the conversion of free translational and rotational degrees of freedom into bound motions. Previous theoretical estimates of the standard entropy change in bimolecular binding processes, DeltaS(o), have been derived from the root-mean-square fluctuations in protein crystals, suggesting DeltaS(o) approximately -50 e.u., i.e., TDeltaS degrees approximately -25 kT = -15 kcal/mol. In this work we focus on adsorption, rather than binding processes. We first present a simple statistical-thermodynamic scheme for calculating the adsorption entropy, including its resolution into translational and rotational contributions, using the known distance-orientation dependent binding (adsorption) potential. We then utilize this scheme to calculate the free energy of interaction and entropy of pentalysine adsorption onto a lipid membrane, obtaining TDeltaS(o) approximately -1.7 kT approximately -1.3 kcal/mol. Most of this entropy change is due to the conversion of one free translation into a bound motion, the rest arising from the confinement of two rotational degrees of freedom. The smaller entropy loss in adsorption compared to binding processes arises partly because a smaller number of degrees of freedom become restricted, but mainly due to the fact that the binding potential is much "softer."

Full Text

The Full Text of this article is available as a PDF (102.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J. 1997 Oct;73(4):1717–1727. doi: 10.1016/S0006-3495(97)78203-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady G. P., Sharp K. A. Energetics of cyclic dipeptide crystal packing and solvation. Biophys J. 1997 Feb;72(2 Pt 1):913–927. doi: 10.1016/s0006-3495(97)78725-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady G. P., Sharp K. A. Entropy in protein folding and in protein-protein interactions. Curr Opin Struct Biol. 1997 Apr;7(2):215–221. doi: 10.1016/s0959-440x(97)80028-0. [DOI] [PubMed] [Google Scholar]
  6. Chothia C., Wodak S., Janin J. Role of subunit interfaces in the allosteric mechanism of hemoglobin. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3793–3797. doi: 10.1073/pnas.73.11.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dwyer J. D., Bloomfield V. A. Binding of multivalent ligands to mobile receptors in membranes. Biopolymers. 1981 Nov;20(11):2323–2336. doi: 10.1002/bip.1981.360201104. [DOI] [PubMed] [Google Scholar]
  8. Erickson H. P. Co-operativity in protein-protein association. The structure and stability of the actin filament. J Mol Biol. 1989 Apr 5;206(3):465–474. doi: 10.1016/0022-2836(89)90494-4. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein A. V., Janin J. The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 1989 Oct;3(1):1–3. doi: 10.1093/protein/3.1.1. [DOI] [PubMed] [Google Scholar]
  10. Froloff N., Windemuth A., Honig B. On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions. Protein Sci. 1997 Jun;6(6):1293–1301. doi: 10.1002/pro.5560060617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gilson M. K., Given J. A., Bush B. L., McCammon J. A. The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J. 1997 Mar;72(3):1047–1069. doi: 10.1016/S0006-3495(97)78756-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holtzer A. The "cratic correction" and related fallacies. Biopolymers. 1995 Jun;35(6):595–602. doi: 10.1002/bip.360350605. [DOI] [PubMed] [Google Scholar]
  13. Horton N., Lewis M. Calculation of the free energy of association for protein complexes. Protein Sci. 1992 Jan;1(1):169–181. doi: 10.1002/pro.5560010117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janin J., Chothia C. Role of hydrophobicity in the binding of coenzymes. Appendix. Translational and rotational contribution to the free energy of dissociation. Biochemistry. 1978 Jul 25;17(15):2943–2948. doi: 10.1021/bi00608a001. [DOI] [PubMed] [Google Scholar]
  15. Janin J. Elusive affinities. Proteins. 1995 Jan;21(1):30–39. doi: 10.1002/prot.340210105. [DOI] [PubMed] [Google Scholar]
  16. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  17. Morton A., Baase W. A., Matthews B. W. Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme. Biochemistry. 1995 Jul 11;34(27):8564–8575. doi: 10.1021/bi00027a006. [DOI] [PubMed] [Google Scholar]
  18. Murphy K. P., Xie D., Thompson K. S., Amzel L. M., Freire E. Entropy in biological binding processes: estimation of translational entropy loss. Proteins. 1994 Jan;18(1):63–67. doi: 10.1002/prot.340180108. [DOI] [PubMed] [Google Scholar]
  19. Murray D., Arbuzova A., Hangyás-Mihályné G., Gambhir A., Ben-Tal N., Honig B., McLaughlin S. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J. 1999 Dec;77(6):3176–3188. doi: 10.1016/S0006-3495(99)77148-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray D., Ben-Tal N., Honig B., McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure. 1997 Aug 15;5(8):985–989. doi: 10.1016/s0969-2126(97)00251-7. [DOI] [PubMed] [Google Scholar]
  21. Murray D., Hermida-Matsumoto L., Buser C. A., Tsang J., Sigal C. T., Ben-Tal N., Honig B., Resh M. D., McLaughlin S. Electrostatics and the membrane association of Src: theory and experiment. Biochemistry. 1998 Feb 24;37(8):2145–2159. doi: 10.1021/bi972012b. [DOI] [PubMed] [Google Scholar]
  22. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  23. Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  25. STEINBERG I. Z., SCHERAGA H. A. Entropy changes accompanying association reactions of proteins. J Biol Chem. 1963 Jan;238:172–181. [PubMed] [Google Scholar]
  26. Tidor B., Karplus M. The contribution of vibrational entropy to molecular association. The dimerization of insulin. J Mol Biol. 1994 May 6;238(3):405–414. doi: 10.1006/jmbi.1994.1300. [DOI] [PubMed] [Google Scholar]
  27. Vajda S., Weng Z., Rosenfeld R., DeLisi C. Effect of conformational flexibility and solvation on receptor-ligand binding free energies. Biochemistry. 1994 Nov 29;33(47):13977–13988. doi: 10.1021/bi00251a004. [DOI] [PubMed] [Google Scholar]
  28. Weng Z., Vajda S., Delisi C. Prediction of protein complexes using empirical free energy functions. Protein Sci. 1996 Apr;5(4):614–626. doi: 10.1002/pro.5560050406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White S. H., Wimley W. C., Ladokhin A. S., Hristova K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 1998;295:62–87. doi: 10.1016/s0076-6879(98)95035-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES