Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1188–1195. doi: 10.1016/S0006-3495(00)76373-9

Switching from simple to complex oscillations in calcium signaling.

U Kummer 1, L F Olsen 1, C J Dixon 1, A K Green 1, E Bornberg-Bauer 1, G Baier 1
PMCID: PMC1301015  PMID: 10968983

Abstract

We present a new model for calcium oscillations based on experiments in hepatocytes. The model considers feedback inhibition on the initial agonist receptor complex by calcium and activated phospholipase C, as well as receptor type-dependent self-enhanced behavior of the activated G(alpha) subunit. It is able to show simple periodic oscillations and periodic bursting, and it is the first model to display chaotic bursting in response to agonist stimulations. Moreover, our model offers a possible explanation for the differences in dynamic behavior observed in response to different agonists in hepatocytes.

Full Text

The Full Text of this article is available as a PDF (112.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Cobbold P. H., Cuthbertson K. S. Spatial and temporal aspects of cell signalling. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):325–343. doi: 10.1098/rstb.1988.0080. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  6. Biddlecome G. H., Berstein G., Ross E. M. Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J Biol Chem. 1996 Apr 5;271(14):7999–8007. doi: 10.1074/jbc.271.14.7999. [DOI] [PubMed] [Google Scholar]
  7. Borghans J. M., Dupont G., Goldbeter A. Complex intracellular calcium oscillations. A theoretical exploration of possible mechanisms. Biophys Chem. 1997 May 21;66(1):25–41. doi: 10.1016/s0301-4622(97)00010-0. [DOI] [PubMed] [Google Scholar]
  8. Bourne H. R., Stryer L. G proteins. The target sets the tempo. Nature. 1992 Aug 13;358(6387):541–543. doi: 10.1038/358541a0. [DOI] [PubMed] [Google Scholar]
  9. Chatton J. Y., Cao Y., Liu H., Stucki J. W. Permissive role of cAMP in the oscillatory Ca2+ response to inositol 1,4,5-trisphosphate in rat hepatocytes. Biochem J. 1998 Mar 15;330(Pt 3):1411–1416. doi: 10.1042/bj3301411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cuthbertson K. S., Chay T. R. Modelling receptor-controlled intracellular calcium oscillators. Cell Calcium. 1991 Feb-Mar;12(2-3):97–109. doi: 10.1016/0143-4160(91)90012-4. [DOI] [PubMed] [Google Scholar]
  11. De Koninck P., Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. doi: 10.1126/science.279.5348.227. [DOI] [PubMed] [Google Scholar]
  12. Dixon C. J., Cobbold P. H., Green A. K. Actions of ADP, but not ATP, on cytosolic free Ca2+ in single rat hepatocytes mimicked by 2-methylthioATP. Br J Pharmacol. 1995 Oct;116(3):1979–1984. doi: 10.1111/j.1476-5381.1995.tb16401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dixon C. J., Woods N. M., Cuthbertson K. S., Cobbold P. H. Evidence for two Ca2(+)-mobilizing purinoceptors on rat hepatocytes. Biochem J. 1990 Jul 15;269(2):499–502. doi: 10.1042/bj2690499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dixon C. J., Woods N. M., Webb T. E., Green A. K. Evidence that rat hepatocytes co-express functional P2Y1 and P2Y2 receptors. Br J Pharmacol. 2000 Feb;129(4):764–770. doi: 10.1038/sj.bjp.0703103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  16. Dubyak G. R., el-Moatassim C. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol. 1993 Sep;265(3 Pt 1):C577–C606. doi: 10.1152/ajpcell.1993.265.3.C577. [DOI] [PubMed] [Google Scholar]
  17. Finch E. A., Turner T. J., Goldin S. M. Subsecond kinetics of inositol 1,4,5-trisphosphate-induced calcium release reveal rapid potentiation and subsequent inactivation by calcium. Ann N Y Acad Sci. 1991;635:400–403. doi: 10.1111/j.1749-6632.1991.tb36509.x. [DOI] [PubMed] [Google Scholar]
  18. Green A. K., Cobbold P. H., Dixon C. J. Cytosolic free Ca2+ oscillations induced by diadenosine 5',5"'-P1,P3-triphosphate and diadenosine 5',5"'-P1,P4-tetraphosphate in single rat hepatocytes are indistinguishable from those induced by ADP and ATP respectively. Biochem J. 1995 Sep 1;310(Pt 2):629–635. doi: 10.1042/bj3100629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Green A. K., Cobbold P. H., Dixon C. J. Effects on the hepatocyte [Ca2+]i oscillator of inhibition of the plasma membrane Ca2+ pump by carboxyeosin or glucagon-(19-29). Cell Calcium. 1997 Aug;22(2):99–109. doi: 10.1016/s0143-4160(97)90110-x. [DOI] [PubMed] [Google Scholar]
  20. Hagar R. E., Burgstahler A. D., Nathanson M. H., Ehrlich B. E. Type III InsP3 receptor channel stays open in the presence of increased calcium. Nature. 1998 Nov 5;396(6706):81–84. doi: 10.1038/23954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hansen C. A., Yang L. J., Williamson J. R. Mechanisms of receptor-mediated Ca2+ signaling in rat hepatocytes. J Biol Chem. 1991 Oct 5;266(28):18573–18579. [PubMed] [Google Scholar]
  22. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999 May 28;284(5419):1527–1530. doi: 10.1126/science.284.5419.1527. [DOI] [PubMed] [Google Scholar]
  23. Houart G., Dupont G., Goldbeter A. Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca2+ oscillations. Bull Math Biol. 1999 May;61(3):507–530. doi: 10.1006/bulm.1999.0095. [DOI] [PubMed] [Google Scholar]
  24. Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
  25. Marhl M., Schuster S., Brumen M. Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations. Biophys Chem. 1998 Apr 20;71(2-3):125–132. [PubMed] [Google Scholar]
  26. Meyer T., Stryer L. Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5051–5055. doi: 10.1073/pnas.85.14.5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Motoyama K., Karl I. E., Flye M. W., Osborne D. F., Hotchkiss R. S. Effect of Ca2+ agonists in the perfused liver: determination via laser scanning confocal microscopy. Am J Physiol. 1999 Feb;276(2 Pt 2):R575–R585. doi: 10.1152/ajpregu.1999.276.2.R575. [DOI] [PubMed] [Google Scholar]
  28. Oancea E., Meyer T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell. 1998 Oct 30;95(3):307–318. doi: 10.1016/s0092-8674(00)81763-8. [DOI] [PubMed] [Google Scholar]
  29. Pietrobon D., Di Virgilio F., Pozzan T. Structural and functional aspects of calcium homeostasis in eukaryotic cells. Eur J Biochem. 1990 Nov 13;193(3):599–622. doi: 10.1111/j.1432-1033.1990.tb19378.x. [DOI] [PubMed] [Google Scholar]
  30. Rooney T. A., Renard D. C., Sass E. J., Thomas A. P. Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. J Biol Chem. 1991 Jul 5;266(19):12272–12282. [PubMed] [Google Scholar]
  31. Sanchez-Bueno A., Cobbold P. H. Agonist-specificity in the role of Ca(2+)-induced Ca2+ release in hepatocyte Ca2+ oscillations. Biochem J. 1993 Apr 1;291(Pt 1):169–172. doi: 10.1042/bj2910169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sanchez-Bueno A., Dixon C. J., Woods N. M., Cuthbertson K. S., Cobbold P. H. Inhibitors of protein kinase C prolong the falling phase of each free-calcium transient in a hormone-stimulated hepatocyte. Biochem J. 1990 Jun 15;268(3):627–632. doi: 10.1042/bj2680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanchez-Bueno A., Greenwood M. R., Varela-Nieto I., Marrero I., Gil B., Mato J. M., Cobbold P. H. Inositol-phosphoglycan inhibits calcium oscillations in hepatocytes by reducing calcium entry. Cell Calcium. 1997 Feb;21(2):125–133. doi: 10.1016/s0143-4160(97)90036-1. [DOI] [PubMed] [Google Scholar]
  34. Shen P., Larter R. Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. Cell Calcium. 1995 Mar;17(3):225–232. doi: 10.1016/0143-4160(95)90037-3. [DOI] [PubMed] [Google Scholar]
  35. Sneyd J., Keizer J., Sanderson M. J. Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J. 1995 Nov;9(14):1463–1472. doi: 10.1096/fasebj.9.14.7589988. [DOI] [PubMed] [Google Scholar]
  36. Sternweis P. C. The active role of beta gamma in signal transduction. Curr Opin Cell Biol. 1994 Apr;6(2):198–203. doi: 10.1016/0955-0674(94)90136-8. [DOI] [PubMed] [Google Scholar]
  37. Striggow F., Bohnensack R. Inositol 1,4,5-trisphosphate activates receptor-mediated calcium entry by two different pathways in hepatocytes. Eur J Biochem. 1994 May 15;222(1):229–234. doi: 10.1111/j.1432-1033.1994.tb18861.x. [DOI] [PubMed] [Google Scholar]
  38. Taylor C. W., Marshall I. C. Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci. 1992 Oct;17(10):403–407. doi: 10.1016/0968-0004(92)90009-x. [DOI] [PubMed] [Google Scholar]
  39. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  40. Toescu E. C. Temporal and spatial heterogeneities of Ca2+ signaling: mechanisms and physiological roles. Am J Physiol. 1995 Aug;269(2 Pt 1):G173–G185. doi: 10.1152/ajpgi.1995.269.2.G173. [DOI] [PubMed] [Google Scholar]
  41. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  42. Wakui M., Potter B. V., Petersen O. H. Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature. 1989 May 25;339(6222):317–320. doi: 10.1038/339317a0. [DOI] [PubMed] [Google Scholar]
  43. Woods N. M., Cuthbertson K. S., Cobbold P. H. Agonist-induced oscillations in cytoplasmic free calcium concentration in single rat hepatocytes. Cell Calcium. 1987 Feb;8(1):79–100. doi: 10.1016/0143-4160(87)90038-8. [DOI] [PubMed] [Google Scholar]
  44. Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]
  45. Woods N. M., Dixon C. J., Cuthbertson K. S., Cobbold P. H. Modulation of free Ca oscillations in single hepatocytes by changes in extracellular K+, Na+ and Ca2+. Cell Calcium. 1990 May;11(5):353–360. doi: 10.1016/0143-4160(90)90038-v. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES