Abstract
A quantum-classical molecular dynamics model (QCMD), applying explicit integration of the time-dependent Schrödinger equation (QD) and Newtonian equations of motion (MD), is presented. The model is capable of describing quantum dynamical processes in complex biomolecular systems. It has been applied in simulations of a multistep catalytic process carried out by phospholipase A(2) in its active site. The process includes quantum-dynamical proton transfer from a water molecule to histidine localized in the active site, followed by a nucleophilic attack of the resulting OH(-) group on a carbonyl carbon atom of a phospholipid substrate, leading to cleavage of an adjacent ester bond. The process has been simulated using a parallel version of the QCMD code. The potential energy function for the active site is computed using an approximate valence bond (AVB) method. The dynamics of the key proton is described either by QD or classical MD. The coupling between the quantum proton and the classical atoms is accomplished via Hellmann-Feynman forces, as well as the time dependence of the potential energy function in the Schrödinger equation (QCMD/AVB model). Analysis of the simulation results with an Advanced Visualization System revealed a correlated rather than a stepwise picture of the enzymatic process. It is shown that an sp(2)--> sp(3) configurational change at the substrate carbonyl carbon is mostly responsible for triggering the activation process.
Full Text
The Full Text of this article is available as a PDF (727.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahnson B. J., Klinman J. P. Hydrogen tunneling in enzyme catalysis. Methods Enzymol. 1995;249:373–397. doi: 10.1016/0076-6879(95)49042-6. [DOI] [PubMed] [Google Scholar]
- Basran J., Sutcliffe M. J., Scrutton N. S. Enzymatic H-transfer requires vibration-driven extreme tunneling. Biochemistry. 1999 Mar 9;38(10):3218–3222. doi: 10.1021/bi982719d. [DOI] [PubMed] [Google Scholar]
- Bennion C., Connolly S., Gensmantel N. P., Hallam C., Jackson C. G., Primrose W. U., Roberts G. C., Robinson D. H., Slaich P. K. Design and synthesis of some substrate analogue inhibitors of phospholipase A2 and investigations by NMR and molecular modeling into the binding interactions in the enzyme-inhibitor complex. J Med Chem. 1992 Aug 7;35(16):2939–2951. doi: 10.1021/jm00094a003. [DOI] [PubMed] [Google Scholar]
- Cha Y., Murray C. J., Klinman J. P. Hydrogen tunneling in enzyme reactions. Science. 1989 Mar 10;243(4896):1325–1330. doi: 10.1126/science.2646716. [DOI] [PubMed] [Google Scholar]
- Jencks W. P. From chemistry to biochemistry to catalysis to movement. Annu Rev Biochem. 1997;66:1–18. doi: 10.1146/annurev.biochem.66.1.1. [DOI] [PubMed] [Google Scholar]
- Jonsson T., Edmondson D. E., Klinman J. P. Hydrogen tunneling in the flavoenzyme monoamine oxidase B. Biochemistry. 1994 Dec 13;33(49):14871–14878. doi: 10.1021/bi00253a026. [DOI] [PubMed] [Google Scholar]
- Karsten W. E., Hwang C. C., Cook P. F. Alpha-secondary tritium kinetic isotope effects indicate hydrogen tunneling and coupled motion occur in the oxidation of L-malate by NAD-malic enzyme. Biochemistry. 1999 Apr 6;38(14):4398–4402. doi: 10.1021/bi982439y. [DOI] [PubMed] [Google Scholar]
- Klinman J. P. Quantum mechanical effects in enzyme-catalysed hydrogen transfer reactions. Trends Biochem Sci. 1989 Sep;14(9):368–373. doi: 10.1016/0968-0004(89)90010-8. [DOI] [PubMed] [Google Scholar]
- Rucker J., Cha Y., Jonsson T., Grant K. L., Klinman J. P. Role of internal thermodynamics in determining hydrogen tunneling in enzyme-catalyzed hydrogen transfer reactions. Biochemistry. 1992 Nov 24;31(46):11489–11499. doi: 10.1021/bi00161a030. [DOI] [PubMed] [Google Scholar]
- Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1563–1566. doi: 10.1126/science.2274788. [DOI] [PubMed] [Google Scholar]
- Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541–1546. doi: 10.1126/science.2274785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sessions R. B., Dauber-Osguthorpe P., Campbell M. M., Osguthorpe D. J. Modeling of substrate and inhibitor binding to phospholipase A2. Proteins. 1992 Sep;14(1):45–64. doi: 10.1002/prot.340140107. [DOI] [PubMed] [Google Scholar]
- Tuckerman ME, Marx D, Klein ML, Parrinello M. On the Quantum Nature of the Shared Proton in Hydrogen Bonds. Science. 1997 Feb 7;275(5301):817–820. doi: 10.1126/science.275.5301.817. [DOI] [PubMed] [Google Scholar]
- Warshel A. Dynamics of enzymatic reactions. Proc Natl Acad Sci U S A. 1984 Jan;81(2):444–448. doi: 10.1073/pnas.81.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warshel A., Levitt M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol. 1976 May 15;103(2):227–249. doi: 10.1016/0022-2836(76)90311-9. [DOI] [PubMed] [Google Scholar]
- White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science. 1990 Dec 14;250(4987):1560–1563. doi: 10.1126/science.2274787. [DOI] [PubMed] [Google Scholar]
- Zhou F., Schulten K. Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins. 1996 May;25(1):12–27. doi: 10.1002/(SICI)1097-0134(199605)25:1<12::AID-PROT2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]