Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1263–1272. doi: 10.1016/S0006-3495(00)76380-6

Structure and hydration of BamHI DNA recognition site: a molecular dynamics investigation.

T Castrignanò 1, G Chillemi 1, A Desideri 1
PMCID: PMC1301022  PMID: 10968990

Abstract

The results of a 3-ns molecular dynamics simulation of the dodecamer duplex d(TATGGATCCATA)(2) recognized by the BamHI endonuclease are presented here. The DNA has been simulated as a flexible molecule using an AMBER force field and the Ewald summation method, which eliminates the undesired effects of truncation and permits evaluation of the full effects of electrostatic forces. The starting B conformation evolves toward a configuration quite close to that observed through x-ray diffraction in its complex with BamHI. This configuration is fairly stable and the Watson-Crick hydrogen bonds are well maintained over the simulation trajectory. Hydration analysis indicates a preferential hydration for the phosphate rather than for the ester oxygens. Hydration shells in both the major and minor groove were observed. In both grooves the C-G pairs were found to be more hydrated than A-T pairs. The "spine of hydration" in the minor groove was clear. Water residence times are longer in the minor groove than in the major groove, although relatively short in both cases. No special long values are observed for sites where water molecules were observed by x-ray diffraction, indicating that water molecules having a high probability of being located in a specific site are also fast-exchanging.

Full Text

The Full Text of this article is available as a PDF (231.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonvin A. M., Sunnerhagen M., Otting G., van Gunsteren W. F. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator. J Mol Biol. 1998 Oct 2;282(4):859–873. doi: 10.1006/jmbi.1998.2034. [DOI] [PubMed] [Google Scholar]
  2. Chalikian T. V., Sarvazyan A. P., Plum G. E., Breslauer K. J. Influence of base composition, base sequence, and duplex structure on DNA hydration: apparent molar volumes and apparent molar adiabatic compressibilities of synthetic and natural DNA duplexes at 25 degrees C. Biochemistry. 1994 Mar 8;33(9):2394–2401. doi: 10.1021/bi00175a007. [DOI] [PubMed] [Google Scholar]
  3. Cheatham T. E., 3rd, Kollman P. A. Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure. 1997 Oct 15;5(10):1297–1311. doi: 10.1016/s0969-2126(97)00282-7. [DOI] [PubMed] [Google Scholar]
  4. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  5. Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
  6. Feig M., Pettitt B. M. Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation. J Mol Biol. 1999 Mar 5;286(4):1075–1095. doi: 10.1006/jmbi.1998.2486. [DOI] [PubMed] [Google Scholar]
  7. Jayaram B., Beyeridge D. L. Modeling DNA in aqueous solutions: theoretical and computer simulation studies on the ion atmosphere of DNA. Annu Rev Biophys Biomol Struct. 1996;25:367–394. doi: 10.1146/annurev.bb.25.060196.002055. [DOI] [PubMed] [Google Scholar]
  8. Kopka M. L., Fratini A. V., Drew H. R., Dickerson R. E. Ordered water structure around a B-DNA dodecamer. A quantitative study. J Mol Biol. 1983 Jan 5;163(1):129–146. doi: 10.1016/0022-2836(83)90033-5. [DOI] [PubMed] [Google Scholar]
  9. Kuhn L. A., Siani M. A., Pique M. E., Fisher C. L., Getzoff E. D., Tainer J. A. The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J Mol Biol. 1992 Nov 5;228(1):13–22. doi: 10.1016/0022-2836(92)90487-5. [DOI] [PubMed] [Google Scholar]
  10. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  11. Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
  12. Levitt M., Park B. H. Water: now you see it, now you don't. Structure. 1993 Dec 15;1(4):223–226. doi: 10.1016/0969-2126(93)90011-5. [DOI] [PubMed] [Google Scholar]
  13. Luise A., Falconi M., Desideri A. Molecular dynamics simulation of solvated azurin: correlation between surface solvent accessibility and water residence times. Proteins. 2000 Apr 1;39(1):56–67. doi: 10.1002/(sici)1097-0134(20000401)39:1<56::aid-prot6>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  14. Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of Bam HI endonuclease bound to DNA: partial folding and unfolding on DNA binding. Science. 1995 Aug 4;269(5224):656–663. doi: 10.1126/science.7624794. [DOI] [PubMed] [Google Scholar]
  15. Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. K. Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature. 1994 Apr 14;368(6472):660–664. doi: 10.1038/368660a0. [DOI] [PubMed] [Google Scholar]
  16. Phan A. T., Leroy J. L., Guéron M. Determination of the residence time of water molecules hydrating B'- DNA and B-DNA, by one-dimensional zero-enhancement nuclear Overhauser effect spectroscopy. J Mol Biol. 1999 Feb 19;286(2):505–519. doi: 10.1006/jmbi.1998.2467. [DOI] [PubMed] [Google Scholar]
  17. Rentzeperis D., Kupke D. W., Marky L. A. Volume changes correlate with entropies and enthalpies in the formation of nucleic acid homoduplexes: differential hydration of A and B conformations. Biopolymers. 1993 Jan;33(1):117–125. doi: 10.1002/bip.360330111. [DOI] [PubMed] [Google Scholar]
  18. Sagui C., Darden T. A. Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct. 1999;28:155–179. doi: 10.1146/annurev.biophys.28.1.155. [DOI] [PubMed] [Google Scholar]
  19. Schneider B., Berman H. M. Hydration of the DNA bases is local. Biophys J. 1995 Dec;69(6):2661–2669. doi: 10.1016/S0006-3495(95)80136-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schneider B., Patel K., Berman H. M. Hydration of the phosphate group in double-helical DNA. Biophys J. 1998 Nov;75(5):2422–2434. doi: 10.1016/S0006-3495(98)77686-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwabe J. W. The role of water in protein-DNA interactions. Curr Opin Struct Biol. 1997 Feb;7(1):126–134. doi: 10.1016/s0959-440x(97)80016-4. [DOI] [PubMed] [Google Scholar]
  22. Shakked Z., Guzikevich-Guerstein G., Frolow F., Rabinovich D., Joachimiak A., Sigler P. B. Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature. 1994 Mar 31;368(6470):469–473. doi: 10.1038/368469a0. [DOI] [PubMed] [Google Scholar]
  23. Subramanian P. S., Beveridge D. L. A theoretical study of the aqueous hydration of canonical B d(CGCGAATTCGCG): Monte Carlo simulation and comparison with crystallographic ordered water sites. J Biomol Struct Dyn. 1989 Jun;6(6):1093–1122. doi: 10.1080/07391102.1989.10506539. [DOI] [PubMed] [Google Scholar]
  24. Subramanian P. S., Ravishanker G., Beveridge D. L. Theoretical considerations on the "spine of hydration" in the minor groove of d(CGCGAATTCGCG).d(GCGCTTAAGCGC): Monte Carlo computer simulation. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1836–1840. doi: 10.1073/pnas.85.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Subramanian P. S., Swaminathan S., Beveridge D. L. Theoretical account of the 'spine of hydration' in the minor groove of duplex d(CGCGAATTCGCG). J Biomol Struct Dyn. 1990 Apr;7(5):1161–1165. doi: 10.1080/07391102.1990.10508553. [DOI] [PubMed] [Google Scholar]
  26. Sunnerhagen M., Denisov V. P., Venu K., Bonvin A. M., Carey J., Halle B., Otting G. Water molecules in DNA recognition I: hydration lifetimes of trp operator DNA in solution measured by NMR spectroscopy. J Mol Biol. 1998 Oct 2;282(4):847–858. doi: 10.1006/jmbi.1998.2033. [DOI] [PubMed] [Google Scholar]
  27. Westhof E. Water: an integral part of nucleic acid structure. Annu Rev Biophys Biophys Chem. 1988;17:125–144. doi: 10.1146/annurev.bb.17.060188.001013. [DOI] [PubMed] [Google Scholar]
  28. Young M. A., Beveridge D. L. Molecular dynamics simulations of an oligonucleotide duplex with adenine tracts phased by a full helix turn. J Mol Biol. 1998 Aug 28;281(4):675–687. doi: 10.1006/jmbi.1998.1962. [DOI] [PubMed] [Google Scholar]
  29. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES