Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1298–1309. doi: 10.1016/S0006-3495(00)76383-1

Interaction of cationic colloids at the surface of J774 cells: a kinetic analysis.

P Chenevier 1, B Veyret 1, D Roux 1, N Henry-Toulmé 1
PMCID: PMC1301025  PMID: 10968993

Abstract

We have characterized the binding of multilamellar colloids to J774 cells. Cationic colloids were shown to bind much more efficiently than neutral ones. Particle uptake by cells was followed by flow cytometry and fluorescence microscopy. Analysis of the kinetics of uptake of cationic particles indicated that binding on the cell surface occurred with two characteristic times. Analysis of the dissociation properties allowed discriminating between several alternative models for adsorption and led us to propose a mechanism that involved two independent classes of binding sites on the cell surface. One class of sites appeared to be governed by a classic mass action law describing a binding equilibrium. The other sites were populated irreversibly by particles made of 10% cationic lipids. This was observed in the absence of endocytosis, under conditions where both the equilibrium and the irreversible binding occurred at the cell surface. We determined the rate constants for the different steps. We found that the reversible association occurred with a characteristic time of the order of tens of seconds, whereas the irreversible binding took a hundred times longer. The presence of serum proteins in the incubation medium did not drastically affect the final uptake of the particles. In contrast, the capture of the particles by cells significantly dropped when the fraction of positively charged lipids contained in the colloids was decreased from 10% to 5%. Finally, the results will be discussed within a comprehensive model where cationic particles find labile binding sites in the volume of the pericellular network (glycocalyx and extracellular matrix) and less-accessible irreversible binding sites at the cell membrane itself.

Full Text

The Full Text of this article is available as a PDF (249.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991 Sep 30;1068(2):133–141. doi: 10.1016/0005-2736(91)90201-i. [DOI] [PubMed] [Google Scholar]
  2. Allen T. M., Mehra T., Hansen C., Chin Y. C. Stealth liposomes: an improved sustained release system for 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1992 May 1;52(9):2431–2439. [PubMed] [Google Scholar]
  3. Allen T. M., Williamson P., Schlegel R. A. Phosphatidylserine as a determinant of reticuloendothelial recognition of liposome models of the erythrocyte surface. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8067–8071. doi: 10.1073/pnas.85.21.8067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer E. A., Wilchek M. The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal. 1980;26:1–45. doi: 10.1002/9780470110461.ch1. [DOI] [PubMed] [Google Scholar]
  5. Benita S., Levy M. Y. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci. 1993 Nov;82(11):1069–1079. doi: 10.1002/jps.2600821102. [DOI] [PubMed] [Google Scholar]
  6. Bonté F., Juliano R. L. Interactions of liposomes with serum proteins. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):359–372. doi: 10.1016/0009-3084(86)90079-4. [DOI] [PubMed] [Google Scholar]
  7. Boussif O., Zanta M. A., Behr J. P. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996 Dec;3(12):1074–1080. [PubMed] [Google Scholar]
  8. Dufourcq J., Neri W., Henry-Toulmé N. Molecular assembling of DNA with amphipathic peptides. FEBS Lett. 1998 Jan 2;421(1):7–11. doi: 10.1016/s0014-5793(97)01522-6. [DOI] [PubMed] [Google Scholar]
  9. Ellens H., Bentz J., Mason D., Zhang F., White J. M. Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry. 1990 Oct 16;29(41):9697–9707. doi: 10.1021/bi00493a027. [DOI] [PubMed] [Google Scholar]
  10. Erbacher P., Remy J. S., Behr J. P. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther. 1999 Jan;6(1):138–145. doi: 10.1038/sj.gt.3300783. [DOI] [PubMed] [Google Scholar]
  11. Gao X., Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996 Jan 23;35(3):1027–1036. doi: 10.1021/bi952436a. [DOI] [PubMed] [Google Scholar]
  12. Goren D., Horowitz A. T., Zalipsky S., Woodle M. C., Yarden Y., Gabizon A. Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer. 1996 Dec;74(11):1749–1756. doi: 10.1038/bjc.1996.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haensler J., Szoka F. C., Jr Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem. 1993 Sep-Oct;4(5):372–379. doi: 10.1021/bc00023a012. [DOI] [PubMed] [Google Scholar]
  14. Hallen R. M. Colorimetric estimation of phospholipids in aqueous dispersions. J Biochem Biophys Methods. 1980 May;2(5):251–255. doi: 10.1016/0165-022x(80)90049-4. [DOI] [PubMed] [Google Scholar]
  15. Henry-Toulmé N., Grouselle M., Ramaseilles C. Multidrug resistance bypass in cells exposed to doxorubicin-loaded nanospheres. Absence of endocytosis. Biochem Pharmacol. 1995 Oct 12;50(8):1135–1139. doi: 10.1016/0006-2952(95)00226-p. [DOI] [PubMed] [Google Scholar]
  16. Hofland H. E., Shephard L., Sullivan S. M. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7305–7309. doi: 10.1073/pnas.93.14.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kamps J. A., Morselt H. W., Scherphof G. L. Uptake of liposomes containing phosphatidylserine by liver cells in vivo and by sinusoidal liver cells in primary culture: in vivo-in vitro differences. Biochem Biophys Res Commun. 1999 Mar 5;256(1):57–62. doi: 10.1006/bbrc.1999.0290. [DOI] [PubMed] [Google Scholar]
  18. Kendall D. A., MacDonald R. C. Characterization of a fluorescence assay to monitor changes in the aqueous volume of lipid vesicles. Anal Biochem. 1983 Oct 1;134(1):26–33. doi: 10.1016/0003-2697(83)90258-0. [DOI] [PubMed] [Google Scholar]
  19. Kirpotin D., Park J. W., Hong K., Zalipsky S., Li W. L., Carter P., Benz C. C., Papahadjopoulos D. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry. 1997 Jan 7;36(1):66–75. doi: 10.1021/bi962148u. [DOI] [PubMed] [Google Scholar]
  20. Koltover I., Salditt T., Rädler J. O., Safinya C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998 Jul 3;281(5373):78–81. doi: 10.1126/science.281.5373.78. [DOI] [PubMed] [Google Scholar]
  21. Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet. 1994 Jul-Sep;19(3):253–256. doi: 10.1007/BF03188928. [DOI] [PubMed] [Google Scholar]
  22. Lee K. D., Hong K., Papahadjopoulos D. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. 1992 Jan 31;1103(2):185–197. doi: 10.1016/0005-2736(92)90086-2. [DOI] [PubMed] [Google Scholar]
  23. Lee K. D., Nir S., Papahadjopoulos D. Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry. 1993 Jan 26;32(3):889–899. doi: 10.1021/bi00054a021. [DOI] [PubMed] [Google Scholar]
  24. Legendre J. Y., Supersaxo A. Short-chain phospholipids enhance amphipathic peptide-mediated gene transfer. Biochem Biophys Res Commun. 1995 Dec 5;217(1):179–185. doi: 10.1006/bbrc.1995.2761. [DOI] [PubMed] [Google Scholar]
  25. Legendre J. Y., Szoka F. C., Jr Cyclic amphipathic peptide-DNA complexes mediate high-efficiency transfection of adherent mammalian cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):893–897. doi: 10.1073/pnas.90.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Legendre J. Y., Trzeciak A., Bohrmann B., Deuschle U., Kitas E., Supersaxo A. Dioleoylmelittin as a novel serum-insensitive reagent for efficient transfection of mammalian cells. Bioconjug Chem. 1997 Jan-Feb;8(1):57–63. doi: 10.1021/bc960076d. [DOI] [PubMed] [Google Scholar]
  27. Leserman L. D., Machy P., Barbet J. Cell-specific drug transfer from liposomes bearing monoclonal antibodies. Nature. 1981 Sep 17;293(5829):226–228. doi: 10.1038/293226a0. [DOI] [PubMed] [Google Scholar]
  28. Meyer O., Kirpotin D., Hong K., Sternberg B., Park J. W., Woodle M. C., Papahadjopoulos D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides. J Biol Chem. 1998 Jun 19;273(25):15621–15627. doi: 10.1074/jbc.273.25.15621. [DOI] [PubMed] [Google Scholar]
  29. Miller C. R., Bondurant B., McLean S. D., McGovern K. A., O'Brien D. F. Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry. 1998 Sep 15;37(37):12875–12883. doi: 10.1021/bi980096y. [DOI] [PubMed] [Google Scholar]
  30. Mislick K. A., Baldeschwieler J. D. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12349–12354. doi: 10.1073/pnas.93.22.12349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nir S., Klappe K., Hoekstra D. Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: application of a mass action kinetic model. Biochemistry. 1986 Apr 22;25(8):2155–2161. doi: 10.1021/bi00356a046. [DOI] [PubMed] [Google Scholar]
  32. Papahadjopoulos D., Allen T. M., Gabizon A., Mayhew E., Matthay K., Huang S. K., Lee K. D., Woodle M. C., Lasic D. D., Redemann C. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11460–11464. doi: 10.1073/pnas.88.24.11460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Park J. W., Hong K., Carter P., Asgari H., Guo L. Y., Keller G. A., Wirth C., Shalaby R., Kotts C., Wood W. I. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1327–1331. doi: 10.1073/pnas.92.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pires P., Simões S., Nir S., Gaspar R., Düzgünes N., Pedroso de Lima M. C. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim Biophys Acta. 1999 Apr 14;1418(1):71–84. doi: 10.1016/s0005-2736(99)00023-1. [DOI] [PubMed] [Google Scholar]
  35. Poste G., Papahadjopoulos D. The influence of vesicle membrane properties on the interaction of lipid vesicles with cultured cells. Ann N Y Acad Sci. 1978;308:164–184. doi: 10.1111/j.1749-6632.1978.tb22021.x. [DOI] [PubMed] [Google Scholar]
  36. Roerdink F., Wassef N. M., Richardson E. C., Alving C. R. Effects of negatively charged lipids on phagocytosis of liposomes opsonized by complement. Biochim Biophys Acta. 1983 Sep 21;734(1):33–39. doi: 10.1016/0005-2736(83)90071-8. [DOI] [PubMed] [Google Scholar]
  37. Sarup J. C., Johnson R. M., King K. L., Fendly B. M., Lipari M. T., Napier M. A., Ullrich A., Shepard H. M. Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul. 1991 Jun;1(2):72–82. [PubMed] [Google Scholar]
  38. Schaffer D. V., Lauffenburger D. A. Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. J Biol Chem. 1998 Oct 23;273(43):28004–28009. doi: 10.1074/jbc.273.43.28004. [DOI] [PubMed] [Google Scholar]
  39. Schwartz B., Benoist C., Abdallah B., Scherman D., Behr J. P., Demeneix B. A. Lipospermine-based gene transfer into the newborn mouse brain is optimized by a low lipospermine/DNA charge ratio. Hum Gene Ther. 1995 Dec;6(12):1515–1524. doi: 10.1089/hum.1995.6.12-1515. [DOI] [PubMed] [Google Scholar]
  40. Straubinger R. M., Papahadjopoulos D., Hong K. L. Endocytosis and intracellular fate of liposomes using pyranine as a probe. Biochemistry. 1990 May 22;29(20):4929–4939. doi: 10.1021/bi00472a025. [DOI] [PubMed] [Google Scholar]
  41. Wadhwa M. S., Collard W. T., Adami R. C., McKenzie D. L., Rice K. G. Peptide-mediated gene delivery: influence of peptide structure on gene expression. Bioconjug Chem. 1997 Jan-Feb;8(1):81–88. doi: 10.1021/bc960079q. [DOI] [PubMed] [Google Scholar]
  42. Woodle M. C., Lasic D. D. Sterically stabilized liposomes. Biochim Biophys Acta. 1992 Aug 14;1113(2):171–199. doi: 10.1016/0304-4157(92)90038-c. [DOI] [PubMed] [Google Scholar]
  43. Yang J. P., Huang L. Time-dependent maturation of cationic liposome-DNA complex for serum resistance. Gene Ther. 1998 Mar;5(3):380–387. doi: 10.1038/sj.gt.3300596. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES