Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1400–1414. doi: 10.1016/S0006-3495(00)76392-2

Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker.

M L Wagner 1, L K Tamm 1
PMCID: PMC1301034  PMID: 10969002

Abstract

There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.

Full Text

The Full Text of this article is available as a PDF (535.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold K., Zschoernig O., Barthel D., Herold W. Exclusion of poly(ethylene glycol) from liposome surfaces. Biochim Biophys Acta. 1990 Mar;1022(3):303–310. doi: 10.1016/0005-2736(90)90278-v. [DOI] [PubMed] [Google Scholar]
  2. Berendes R., Voges D., Demange P., Huber R., Burger A. Structure-function analysis of the ion channel selectivity filter in human annexin V. Science. 1993 Oct 15;262(5132):427–430. doi: 10.1126/science.7692599. [DOI] [PubMed] [Google Scholar]
  3. Cornell B. A., Braach-Maksvytis V. L., King L. G., Osman P. D., Raguse B., Wieczorek L., Pace R. J. A biosensor that uses ion-channel switches. Nature. 1997 Jun 5;387(6633):580–583. doi: 10.1038/42432. [DOI] [PubMed] [Google Scholar]
  4. Cézanne L., Lopez A., Loste F., Parnaud G., Saurel O., Demange P., Tocanne J. F. Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers. Biochemistry. 1999 Mar 2;38(9):2779–2786. doi: 10.1021/bi9818568. [DOI] [PubMed] [Google Scholar]
  5. Dietrich C., Tampé R. Charge determination of membrane molecules in polymer-supported lipid layers. Biochim Biophys Acta. 1995 Sep 13;1238(2):183–191. doi: 10.1016/0005-2736(95)00129-q. [DOI] [PubMed] [Google Scholar]
  6. Du H., Chandaroy P., Hui S. W. Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion. Biochim Biophys Acta. 1997 Jun 12;1326(2):236–248. doi: 10.1016/s0005-2736(97)00027-8. [DOI] [PubMed] [Google Scholar]
  7. Edidin M., Zúiga M. C., Sheetz M. P. Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3378–3382. doi: 10.1073/pnas.91.8.3378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elender G., Kühner M., Sackmann E. Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosens Bioelectron. 1996;11(6-7):565–577. doi: 10.1016/0956-5663(96)83292-1. [DOI] [PubMed] [Google Scholar]
  9. Gilmanshin R., Creutz C. E., Tamm L. K. Annexin IV reduces the rate of lateral lipid diffusion and changes the fluid phase structure of the lipid bilayer when it binds to negatively charged membranes in the presence of calcium. Biochemistry. 1994 Jul 12;33(27):8225–8232. doi: 10.1021/bi00193a008. [DOI] [PubMed] [Google Scholar]
  10. Heyse S., Stora T., Schmid E., Lakey J. H., Vogel H. Emerging techniques for investigating molecular interactions at lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):319–338. doi: 10.1016/s0304-4157(98)00020-3. [DOI] [PubMed] [Google Scholar]
  11. Hinterdorfer P., Baber G., Tamm L. K. Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion. J Biol Chem. 1994 Aug 12;269(32):20360–20368. [PubMed] [Google Scholar]
  12. Holloway P. W., Buchheit C. Topography of the membrane-binding domain of cytochrome b5 in lipids by Fourier-transform infrared spectroscopy. Biochemistry. 1990 Oct 16;29(41):9631–9637. doi: 10.1021/bi00493a018. [DOI] [PubMed] [Google Scholar]
  13. Hubbard J. B., Silin V., Plant A. L. Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanisms of formation of hybrid bilayer membranes. Biophys Chem. 1998 Dec 14;75(3):163–176. doi: 10.1016/s0301-4622(98)00199-9. [DOI] [PubMed] [Google Scholar]
  14. Huber R., Römisch J., Paques E. P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J. 1990 Dec;9(12):3867–3874. doi: 10.1002/j.1460-2075.1990.tb07605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Isas J. M., Cartailler J. P., Sokolov Y., Patel D. R., Langen R., Luecke H., Hall J. E., Haigler H. T. Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry. 2000 Mar 21;39(11):3015–3022. doi: 10.1021/bi9922401. [DOI] [PubMed] [Google Scholar]
  16. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kalb E., Engel J., Tamm L. K. Binding of proteins to specific target sites in membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1990 Feb 13;29(6):1607–1613. doi: 10.1021/bi00458a036. [DOI] [PubMed] [Google Scholar]
  18. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  19. Kuhl T. L., Leckband D. E., Lasic D. D., Israelachvili J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J. 1994 May;66(5):1479–1488. doi: 10.1016/S0006-3495(94)80938-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuhl T. L., Majewski J., Wong J. Y., Steinberg S., Leckband D. E., Israelachvili J. N., Smith G. S. A neutron reflectivity study of polymer-modified phospholipid monolayers at the solid-solution interface: polyethylene glycol-lipids on silane-modified substrates. Biophys J. 1998 Nov;75(5):2352–2362. doi: 10.1016/S0006-3495(98)77679-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kühner M., Tampé R., Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates. Biophys J. 1994 Jul;67(1):217–226. doi: 10.1016/S0006-3495(94)80472-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ladokhin A. S., Holloway P. W. Fluorescence of membrane-bound tryptophan octyl ester: a model for studying intrinsic fluorescence of protein-membrane interactions. Biophys J. 1995 Aug;69(2):506–517. doi: 10.1016/S0006-3495(95)79924-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ladokhin A. S., Wang L., Steggles A. W., Holloway P. W. Fluorescence study of a mutant cytochrome b5 with a single tryptophan in the membrane-binding domain. Biochemistry. 1991 Oct 22;30(42):10200–10206. doi: 10.1021/bi00106a018. [DOI] [PubMed] [Google Scholar]
  24. Langen R., Isas J. M., Hubbell W. L., Haigler H. T. A transmembrane form of annexin XII detected by site-directed spin labeling. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14060–14065. doi: 10.1073/pnas.95.24.14060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Majewski J., Wong J. Y., Park C. K., Seitz M., Israelachvili J. N., Smith G. S. Structural studies of polymer-cushioned lipid bilayers. Biophys J. 1998 Nov;75(5):2363–2367. doi: 10.1016/S0006-3495(98)77680-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  27. Poglitsch C. L., Sumner M. T., Thompson N. L. Binding of IgG to MoFc gamma RII purified and reconstituted into supported planar membranes as measured by total internal reflection fluorescence microscopy. Biochemistry. 1991 Jul 9;30(27):6662–6671. doi: 10.1021/bi00241a005. [DOI] [PubMed] [Google Scholar]
  28. Reviakine I, I, Bergsma-Schutter W, Brisson A. Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM. J Struct Biol. 1998;121(3):356–361. doi: 10.1006/jsbi.1998.4003. [DOI] [PubMed] [Google Scholar]
  29. Rex S., Zuckermann M. J., Lafleur M., Silvius J. R. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers. Biophys J. 1998 Dec;75(6):2900–2914. doi: 10.1016/S0006-3495(98)77732-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sackmann E. Supported membranes: scientific and practical applications. Science. 1996 Jan 5;271(5245):43–48. doi: 10.1126/science.271.5245.43. [DOI] [PubMed] [Google Scholar]
  31. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  32. Saxton M. J., Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373. [DOI] [PubMed] [Google Scholar]
  33. Schütz G. J., Schindler H., Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J. 1997 Aug;73(2):1073–1080. doi: 10.1016/S0006-3495(97)78139-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Silvestro L., Axelsen P. H. Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes. Chem Phys Lipids. 1998 Nov;96(1-2):69–80. doi: 10.1016/s0009-3084(98)00081-4. [DOI] [PubMed] [Google Scholar]
  35. Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spinke J., Yang J., Wolf H., Liley M., Ringsdorf H., Knoll W. Polymer-supported bilayer on a solid substrate. Biophys J. 1992 Dec;63(6):1667–1671. doi: 10.1016/S0006-3495(92)81742-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tamm L. K. Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry. 1988 Mar 8;27(5):1450–1457. doi: 10.1021/bi00405a009. [DOI] [PubMed] [Google Scholar]
  38. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tamm L. K., Tatulian S. A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys. 1997 Nov;30(4):365–429. doi: 10.1017/s0033583597003375. [DOI] [PubMed] [Google Scholar]
  40. Thompson N. L., Drake A. W., Chen L., Vanden Broek W. Equilibrium, kinetics, diffusion and self-association of proteins at membrane surfaces: measurement by total internal reflection fluorescence microscopy. Photochem Photobiol. 1997 Jan;65(1):39–46. doi: 10.1111/j.1751-1097.1997.tb01875.x. [DOI] [PubMed] [Google Scholar]
  41. Thompson N. L., Pearce K. H., Hsieh H. V. Total internal reflection fluorescence microscopy: application to substrate-supported planar membranes. Eur Biophys J. 1993;22(5):367–378. doi: 10.1007/BF00213560. [DOI] [PubMed] [Google Scholar]
  42. Vergères G., Ramsden J., Waskell L. The carboxyl terminus of the membrane-binding domain of cytochrome b5 spans the bilayer of the endoplasmic reticulum. J Biol Chem. 1995 Feb 17;270(7):3414–3422. doi: 10.1074/jbc.270.7.3414. [DOI] [PubMed] [Google Scholar]
  43. Voges D., Berendes R., Burger A., Demange P., Baumeister W., Huber R. Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study. J Mol Biol. 1994 Apr 29;238(2):199–213. doi: 10.1006/jmbi.1994.1281. [DOI] [PubMed] [Google Scholar]
  44. Wong J. Y., Majewski J., Seitz M., Park C. K., Israelachvili J. N., Smith G. S. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry. Biophys J. 1999 Sep;77(3):1445–1457. doi: 10.1016/S0006-3495(99)76992-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wong J. Y., Park C. K., Seitz M., Israelachvili J. Polymer-cushioned bilayers. II. An investigation of interaction forces and fusion using the surface forces apparatus. Biophys J. 1999 Sep;77(3):1458–1468. doi: 10.1016/S0006-3495(99)76993-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Woodle M. C., Lasic D. D. Sterically stabilized liposomes. Biochim Biophys Acta. 1992 Aug 14;1113(2):171–199. doi: 10.1016/0304-4157(92)90038-c. [DOI] [PubMed] [Google Scholar]
  47. van Oudenaarden A., Boxer S. G. Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science. 1999 Aug 13;285(5430):1046–1048. doi: 10.1126/science.285.5430.1046. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES