Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1438–1446. doi: 10.1016/S0006-3495(00)76395-8

Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids.

I M Hafez 1, S Ansell 1, P R Cullis 1
PMCID: PMC1301037  PMID: 10969005

Abstract

The pH-dependent fusion properties of large unilamellar vesicles (LUVs) composed of binary mixtures of anionic and cationic lipids have been investigated. It is shown that stable LUVs can be prepared from the ionizable anionic lipid cholesteryl hemisuccinate (CHEMS) and the permanently charged cationic lipid N,N-dioleoyl-N, N-dimethylammonium chloride (DODAC) at neutral pH values and that these LUVs undergo fusion as the pH is reduced. The critical pH at which fusion was observed (pH(f)) was dependent on the cationic lipid-to-anionic lipid ratio. LUVs prepared from DODAC/CHEMS mixtures at molar ratios of 0 to 0.85 resulted in vesicles with pH(f) values that ranged from pH 4.0 to 6.7, respectively. This behavior is consistent with a model in which fusion occurs at pH values such that the DODAC/CHEMS LUV surface charge is zero. Related behavior was observed for LUVs composed of the ionizable cationic lipid 3alpha-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-Chol) and the acidic lipid dioleoylphosphatidic acid (DOPA). Freeze-fracture and (31)P NMR evidence is presented which indicates that pH-dependent fusion results from a preference of mixtures of cationic and anionic lipid for "inverted" nonbilayer lipid phases under conditions where the surface charge is zero. It is concluded that tunable pH-sensitive LUVs composed of cationic and anionic lipids may be of utility for drug delivery applications. It is also suggested that the ability of cationic lipids to adopt inverted nonbilayer structures in combination with anionic lipids may be related to the ability of cationic lipids to facilitate the intracellular delivery of macromolecules.

Full Text

The Full Text of this article is available as a PDF (421.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chernomordik L. V., Zimmerberg J. Bending membranes to the task: structural intermediates in bilayer fusion. Curr Opin Struct Biol. 1995 Aug;5(4):541–547. doi: 10.1016/0959-440x(95)80041-7. [DOI] [PubMed] [Google Scholar]
  2. Collins D., Maxfield F., Huang L. Immunoliposomes with different acid sensitivities as probes for the cellular endocytic pathway. Biochim Biophys Acta. 1989 Dec 11;987(1):47–55. doi: 10.1016/0005-2736(89)90453-7. [DOI] [PubMed] [Google Scholar]
  3. Connor J., Yatvin M. B., Huang L. pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1715–1718. doi: 10.1073/pnas.81.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cullis P. R., Verkleij A. J., Ververgaert P. H. Polymorphic phase behaviour of cardiolipin as detected by 31P NMR and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine. Biochim Biophys Acta. 1978 Oct 19;513(1):11–20. doi: 10.1016/0005-2736(78)90107-4. [DOI] [PubMed] [Google Scholar]
  5. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  6. Cullis P. R., de Kruijff B. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophys Acta. 1978 Oct 19;513(1):31–42. doi: 10.1016/0005-2736(78)90109-8. [DOI] [PubMed] [Google Scholar]
  7. Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
  8. Ellens H., Siegel D. P., Alford D., Yeagle P. L., Boni L., Lis L. J., Quinn P. J., Bentz J. Membrane fusion and inverted phases. Biochemistry. 1989 May 2;28(9):3692–3703. doi: 10.1021/bi00435a011. [DOI] [PubMed] [Google Scholar]
  9. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gruner S. M., Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem. 1985;14:211–238. doi: 10.1146/annurev.bb.14.060185.001235. [DOI] [PubMed] [Google Scholar]
  11. Hafez I. M., Cullis P. R. Cholesteryl hemisuccinate exhibits pH sensitive polymorphic phase behavior. Biochim Biophys Acta. 2000 Jan 15;1463(1):107–114. doi: 10.1016/s0005-2736(99)00186-8. [DOI] [PubMed] [Google Scholar]
  12. Hope M. J., Walker D. C., Cullis P. R. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Biochem Biophys Res Commun. 1983 Jan 14;110(1):15–22. doi: 10.1016/0006-291x(83)91253-6. [DOI] [PubMed] [Google Scholar]
  13. Hope M. J., Wong K. F., Cullis P. R. Freeze-fracture of lipids and model membrane systems. J Electron Microsc Tech. 1989 Dec;13(4):277–287. doi: 10.1002/jemt.1060130403. [DOI] [PubMed] [Google Scholar]
  14. Janoff A. S., Kurtz C. L., Jablonski R. L., Minchey S. R., Boni L. T., Gruner S. M., Cullis P. R., Mayer L. D., Hope M. J. Characterization of cholesterol hemisuccinate and alpha-tocopherol hemisuccinate vesicles. Biochim Biophys Acta. 1988 Jun 22;941(2):165–175. doi: 10.1016/0005-2736(88)90177-0. [DOI] [PubMed] [Google Scholar]
  15. Jizomoto H., Kanaoka E., Hirano K. pH-sensitive liposomes composed of tocopherol hemisuccinate and of phosphatidylethanolamine including tocopherol hemisuccinate. Biochim Biophys Acta. 1994 Aug 4;1213(3):343–348. [PubMed] [Google Scholar]
  16. Kaler E. W., Murthy A. K., Rodriguez B. E., Zasadzinski J. A. Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science. 1989 Sep 22;245(4924):1371–1374. doi: 10.1126/science.2781283. [DOI] [PubMed] [Google Scholar]
  17. Lai M. Z., Düzgüneş N., Szoka F. C. Effects of replacement of the hydroxyl group of cholesterol and tocopherol on the thermotropic behavior of phospholipid membranes. Biochemistry. 1985 Mar 26;24(7):1646–1653. doi: 10.1021/bi00328a012. [DOI] [PubMed] [Google Scholar]
  18. Lai M. Z., Vail W. J., Szoka F. C. Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate. Biochemistry. 1985 Mar 26;24(7):1654–1661. doi: 10.1021/bi00328a013. [DOI] [PubMed] [Google Scholar]
  19. Ledley F. D. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther. 1995 Sep;6(9):1129–1144. doi: 10.1089/hum.1995.6.9-1129. [DOI] [PubMed] [Google Scholar]
  20. Legendre J. Y., Szoka F. C., Jr Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes. Pharm Res. 1992 Oct;9(10):1235–1242. doi: 10.1023/a:1015836829670. [DOI] [PubMed] [Google Scholar]
  21. Loose-Mitchell D. S. Antisense nucleic acids as a potential class of pharmaceutical agents. Trends Pharmacol Sci. 1988 Feb;9(2):45–47. doi: 10.1016/0165-6147(88)90112-5. [DOI] [PubMed] [Google Scholar]
  22. Mayer L. D., Hope M. J., Cullis P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986 Jun 13;858(1):161–168. doi: 10.1016/0005-2736(86)90302-0. [DOI] [PubMed] [Google Scholar]
  23. Mok K. W., Cullis P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997 Nov;73(5):2534–2545. doi: 10.1016/S0006-3495(97)78282-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pott T., Maillet J. C., Dufourc E. J. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study. Biophys J. 1995 Nov;69(5):1897–1908. doi: 10.1016/S0006-3495(95)80060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rand R. P., Sengupta S. Cardiolipin forms hexagonal structures with divalent cations. Biochim Biophys Acta. 1972 Feb 11;255(2):484–492. doi: 10.1016/0005-2736(72)90152-6. [DOI] [PubMed] [Google Scholar]
  26. Siegel D. P. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J. 1999 Jan;76(1 Pt 1):291–313. doi: 10.1016/S0006-3495(99)77197-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Straubinger R. M. pH-sensitive liposomes for delivery of macromolecules into cytoplasm of cultured cells. Methods Enzymol. 1993;221:361–376. doi: 10.1016/0076-6879(93)21030-c. [DOI] [PubMed] [Google Scholar]
  28. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  29. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  30. Tilcock C. P., Bally M. B., Farren S. B., Cullis P. R., Gruner S. M. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Biochemistry. 1984 Jun 5;23(12):2696–2703. doi: 10.1021/bi00307a025. [DOI] [PubMed] [Google Scholar]
  31. Tocanne J. F., Teissié J. Ionization of phospholipids and phospholipid-supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta. 1990 Feb 28;1031(1):111–142. doi: 10.1016/0304-4157(90)90005-w. [DOI] [PubMed] [Google Scholar]
  32. Tycko B., Maxfield F. R. Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin. Cell. 1982 Mar;28(3):643–651. doi: 10.1016/0092-8674(82)90219-7. [DOI] [PubMed] [Google Scholar]
  33. Verkleij A. J., van Echteld C. J., Gerritsen W. J., Cullis P. R., de Kruijff B. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions. Biochim Biophys Acta. 1980 Aug 14;600(3):620–624. doi: 10.1016/0005-2736(80)90465-4. [DOI] [PubMed] [Google Scholar]
  34. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  35. Yatvin M. B., Kreutz W., Horwitz B. A., Shinitzky M. pH-sensitive liposomes: possible clinical implications. Science. 1980 Dec 12;210(4475):1253–1255. doi: 10.1126/science.7434025. [DOI] [PubMed] [Google Scholar]
  36. Zelphati O., Szoka F. C., Jr Mechanism of oligonucleotide release from cationic liposomes. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11493–11498. doi: 10.1073/pnas.93.21.11493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zemb T, Dubois M, Deme B, Gulik-Krzywicki T. Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions . Science. 1999 Feb 5;283(5403):816–819. doi: 10.1126/science.283.5403.816. [DOI] [PubMed] [Google Scholar]
  38. Zuidam N. J., Barenholz Y. Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim Biophys Acta. 1997 Oct 23;1329(2):211–222. doi: 10.1016/s0005-2736(97)00110-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES