Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1447–1454. doi: 10.1016/S0006-3495(00)76396-X

Lipoplex formation under equilibrium conditions reveals a three-step mechanism.

V Oberle 1, U Bakowsky 1, I S Zuhorn 1, D Hoekstra 1
PMCID: PMC1301038  PMID: 10969006

Abstract

Cellular transfection can be accomplished by the use of synthetic amphiphiles as gene carrier system. To understand the mechanism and hence to improve the efficiency of transfection, insight into the assembly and properties of the amphiphile/gene complex is crucial. Here, we have studied the interaction between a plasmid and cationic amphiphiles, using a monolayer technique, and have examined complex assembly by atomic force microscopy. The data reveal a three-step mechanism for complex formation. In a first step, the plasmids, interacting with the monolayer, display a strong tendency of orientational ordering. Subsequently, individual plasmids enwrap themselves with amphiphile molecules in a multilamellar fashion. The size of the complex formed is determined by the supercoiled size of the plasmid, and calculations reveal that the plasmid can be surrounded by 3 to 5 bilayers of the amphiphile. The eventual size of the transfecting complex is finally governed by fusion events between individually wrapped amphiphile/DNA complexes. In bulk phase, where complex assembly is triggered by mixing amphiphilic vesicles and plasmids, a similar wrapping process is observed. However, in this case, imperfections in this process may give rise to a partial exposure of plasmids, i.e., part of the plasmid is not covered with a layer of amphiphile. We suggest that these exposed sites may act as nucleation sites for massive lipoplex clustering, which in turn may affect transfection efficiency.

Full Text

The Full Text of this article is available as a PDF (252.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dowty M. E., Williams P., Zhang G., Hagstrom J. E., Wolff J. A. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4572–4576. doi: 10.1073/pnas.92.10.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eastman S. J., Siegel C., Tousignant J., Smith A. E., Cheng S. H., Scheule R. K. Biophysical characterization of cationic lipid: DNA complexes. Biochim Biophys Acta. 1997 Apr 3;1325(1):41–62. doi: 10.1016/s0005-2736(96)00242-8. [DOI] [PubMed] [Google Scholar]
  3. Escriou V., Ciolina C., Lacroix F., Byk G., Scherman D., Wils P. Cationic lipid-mediated gene transfer: effect of serum on cellular uptake and intracellular fate of lipopolyamine/DNA complexes. Biochim Biophys Acta. 1998 Jan 19;1368(2):276–288. doi: 10.1016/s0005-2736(97)00194-6. [DOI] [PubMed] [Google Scholar]
  4. Felgner P. L. Improvements in cationic liposomes for in vivo gene transfer. Hum Gene Ther. 1996 Oct 1;7(15):1791–1793. doi: 10.1089/hum.1996.7.15-1791. [DOI] [PubMed] [Google Scholar]
  5. Gershon H., Ghirlando R., Guttman S. B., Minsky A. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry. 1993 Jul 20;32(28):7143–7151. doi: 10.1021/bi00079a011. [DOI] [PubMed] [Google Scholar]
  6. Golan R., Pietrasanta L. I., Hsieh W., Hansma H. G. DNA toroids: stages in condensation. Biochemistry. 1999 Oct 19;38(42):14069–14076. doi: 10.1021/bi990901o. [DOI] [PubMed] [Google Scholar]
  7. Gustafsson J., Arvidson G., Karlsson G., Almgren M. Complexes between cationic liposomes and DNA visualized by cryo-TEM. Biochim Biophys Acta. 1995 May 4;1235(2):305–312. doi: 10.1016/0005-2736(95)80018-b. [DOI] [PubMed] [Google Scholar]
  8. Hansma H. G., Golan R., Hsieh W., Lollo C. P., Mullen-Ley P., Kwoh D. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic Acids Res. 1998 May 15;26(10):2481–2487. doi: 10.1093/nar/26.10.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansma H. G., Sinsheimer R. L., Groppe J., Bruice T. C., Elings V., Gurley G., Bezanilla M., Mastrangelo I. A., Hough P. V., Hansma P. K. Recent advances in atomic force microscopy of DNA. Scanning. 1993 Sep-Oct;15(5):296–299. doi: 10.1002/sca.4950150509. [DOI] [PubMed] [Google Scholar]
  10. Huebner S., Battersby B. J., Grimm R., Cevc G. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy. Biophys J. 1999 Jun;76(6):3158–3166. doi: 10.1016/S0006-3495(99)77467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee E. R., Marshall J., Siegel C. S., Jiang C., Yew N. S., Nichols M. R., Nietupski J. B., Ziegler R. J., Lane M. B., Wang K. X. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther. 1996 Sep 10;7(14):1701–1717. doi: 10.1089/hum.1996.7.14-1701. [DOI] [PubMed] [Google Scholar]
  12. Leforestier A., Nissen H. U., Dubochet J. DNA-DNA interaction in thin layer analysed by cryo-electron microscopy. C R Acad Sci III. 1995 Oct;318(10):1015–1020. [PubMed] [Google Scholar]
  13. Mok K. W., Cullis P. R. Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997 Nov;73(5):2534–2545. doi: 10.1016/S0006-3495(97)78282-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogris M., Steinlein P., Kursa M., Mechtler K., Kircheis R., Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998 Oct;5(10):1425–1433. doi: 10.1038/sj.gt.3300745. [DOI] [PubMed] [Google Scholar]
  15. Reimer D. L., Zhang Y., Kong S., Wheeler J. J., Graham R. W., Bally M. B. Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry. 1995 Oct 3;34(39):12877–12883. doi: 10.1021/bi00039a050. [DOI] [PubMed] [Google Scholar]
  16. Rädler J. O., Koltover I., Salditt T., Safinya C. R. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997 Feb 7;275(5301):810–814. doi: 10.1126/science.275.5301.810. [DOI] [PubMed] [Google Scholar]
  17. Sternberg B., Sorgi F. L., Huang L. New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Lett. 1994 Dec 19;356(2-3):361–366. doi: 10.1016/0014-5793(94)01315-2. [DOI] [PubMed] [Google Scholar]
  18. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  19. Xu Y., Hui S. W., Frederik P., Szoka F. C., Jr Physicochemical characterization and purification of cationic lipoplexes. Biophys J. 1999 Jul;77(1):341–353. doi: 10.1016/S0006-3495(99)76894-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xu Y., Szoka F. C., Jr Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996 May 7;35(18):5616–5623. doi: 10.1021/bi9602019. [DOI] [PubMed] [Google Scholar]
  21. Zabner J., Fasbender A. J., Moninger T., Poellinger K. A., Welsh M. J. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995 Aug 11;270(32):18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  22. Zanta M. A., Belguise-Valladier P., Behr J. P. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):91–96. doi: 10.1073/pnas.96.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van der Woude I., Visser H. W., ter Beest M. B., Wagenaar A., Ruiters M. H., Engberts J. B., Hoekstra D. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system. Biochim Biophys Acta. 1995 Nov 22;1240(1):34–40. doi: 10.1016/0005-2736(95)00161-1. [DOI] [PubMed] [Google Scholar]
  24. van der Woude I., Wagenaar A., Meekel A. A., ter Beest M. B., Ruiters M. H., Engberts J. B., Hoekstra D. Novel pyridinium surfactants for efficient, nontoxic in vitro gene delivery. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1160–1165. doi: 10.1073/pnas.94.4.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES