Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1455–1464. doi: 10.1016/S0006-3495(00)76397-1

Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids.

R N Lewis 1, R N McElhaney 1
PMCID: PMC1301039  PMID: 10969007

Abstract

The lamellar/nonlamellar phase preferences of lipid model membranes composed of mixtures of several cationic lipids with various zwitterionic and anionic phospholipids were examined by a combination of differential scanning calorimetry and (31)P NMR spectroscopy. All of the cationic lipids utilized in this study form only lamellar phases in isolation. Mixtures of these cationic lipids with zwitterionic strongly lamellar phase-preferring lipids such as phosphatidylcholine form only the lamellar liquid-crystalline phase even at high temperatures, as expected. Moreover, mixtures of these cationic lipids with strongly nonlamellar phase-preferring zwitterionic lipids such as phosphatidylethanolamine exhibit a markedly reduced propensity to form inverted nonlamellar phases, again as expected. However, when mixed with anionic lipids such as phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid, a marked enhancement of nonlamellar phase-forming propensity occurs, despite the fact both components of the mixture are nominally lamellar phase-preferring. An examination of the lamellar/nonlamellar phase transition temperatures and the nature of the nonlamellar phases formed, as a function of temperature and of the composition of the mixture, indicates that the propensity to form inverted nonlamellar phases is maximal in mixtures where the mean surface charge of the membrane surface approaches neutrality and decreases markedly with increases in the density of positive or negative charge at the membrane surface. Moreover, the onset temperatures of the reversed hexagonal phase rise more steeply than do those of the inverted cubic phase as the ratio of cationic and anionic lipids is varied, suggesting that the formation of inverted hexagonal phases is more sensitive to this surface charge effect. These results indicate that surface charge per se is a significant and effective modulator of the lamellar/nonlamellar phase preferences of membrane lipids and that charged group interactions at membrane surfaces may have a major role in regulating this particular membrane property.

Full Text

The Full Text of this article is available as a PDF (121.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boggs J. M., Stamp D., Hughes D. W., Deber C. M. Influence of ether linkage on the lamellar to hexagonal phase transition of ethanolamine phospholipids. Biochemistry. 1981 Sep 29;20(20):5728–5735. doi: 10.1021/bi00523a015. [DOI] [PubMed] [Google Scholar]
  2. Buckland A. G., Wilton D. C. Anionic phospholipids, interfacial binding and the regulation of cell functions. Biochim Biophys Acta. 2000 Jan 17;1483(2):199–216. doi: 10.1016/s1388-1981(99)00188-2. [DOI] [PubMed] [Google Scholar]
  3. Cullis P. R., De Kruyff B. 31P NMR studies of unsonicated aqueous dispersions of neutral and acidic phospholipids. Effects of phase transitions, p2H and divalent cations on the motion in the phosphate region of the polar headgroup. Biochim Biophys Acta. 1976 Jul 1;436(3):523–540. doi: 10.1016/0005-2736(76)90438-7. [DOI] [PubMed] [Google Scholar]
  4. Cullis P. R., Verkleij A. J., Ververgaert P. H. Polymorphic phase behaviour of cardiolipin as detected by 31P NMR and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine. Biochim Biophys Acta. 1978 Oct 19;513(1):11–20. doi: 10.1016/0005-2736(78)90107-4. [DOI] [PubMed] [Google Scholar]
  5. Eibl H., Woolley P. Electrostatic interactions at charged lipid membranes. Hydrogen bonds in lipid membrane surfaces. Biophys Chem. 1979 Nov;10(3-4):261–271. doi: 10.1016/0301-4622(79)85015-2. [DOI] [PubMed] [Google Scholar]
  6. Eins S. Electron microscopy of mesomorphic structures of aqueous lipid phases. 3. The phosphatidylserine-water system. Chem Phys Lipids. 1972 Jan;8(1):26–31. doi: 10.1016/0009-3084(72)90040-0. [DOI] [PubMed] [Google Scholar]
  7. Farren S. B., Cullis P. R. Polymorphism of phosphatidylglycerol-phosphatidylethanolamine model membrane systems: a 31p NMR study. Biochem Biophys Res Commun. 1980 Nov 17;97(1):182–191. doi: 10.1016/s0006-291x(80)80152-5. [DOI] [PubMed] [Google Scholar]
  8. Farren S. B., Hope M. J., Cullis P. R. Polymorphic phase preferences of phosphatidic acid: A 31P and 2H NMR study. Biochem Biophys Res Commun. 1983 Mar 16;111(2):675–682. doi: 10.1016/0006-291x(83)90359-5. [DOI] [PubMed] [Google Scholar]
  9. Foht P. J., Tran Q. M., Lewis R. N., McElhaney R. N. Quantitation of the phase preferences of the major lipids of the Acholeplasma laidlawii B membrane. Biochemistry. 1995 Oct 24;34(42):13811–13817. doi: 10.1021/bi00042a012. [DOI] [PubMed] [Google Scholar]
  10. Harlos K., Eibl H. Hexagonal phases in phospholipids with saturated chains: phosphatidylethanolamines and phosphatidic acids. Biochemistry. 1981 May 12;20(10):2888–2892. doi: 10.1021/bi00513a027. [DOI] [PubMed] [Google Scholar]
  11. Harlos K., Eibl H. Influence of calcium on phosphatidylglycerol. Two separate lamellar structures. Biochemistry. 1980 Mar 4;19(5):895–899. doi: 10.1021/bi00546a011. [DOI] [PubMed] [Google Scholar]
  12. Hauser H., Paltauf F., Shipley G. G. Structure and thermotropic behavior of phosphatidylserine bilayer membranes. Biochemistry. 1982 Mar 2;21(5):1061–1067. doi: 10.1021/bi00534a037. [DOI] [PubMed] [Google Scholar]
  13. Hope M. J., Cullis P. R. Effects of divalent cations and pH on phosphatidylserine model membranes: a 31P NMR study. Biochem Biophys Res Commun. 1980 Feb 12;92(3):846–852. doi: 10.1016/0006-291x(80)90780-9. [DOI] [PubMed] [Google Scholar]
  14. Koltover I., Salditt T., Rädler J. O., Safinya C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science. 1998 Jul 3;281(5373):78–81. doi: 10.1126/science.281.5373.78. [DOI] [PubMed] [Google Scholar]
  15. Koltover I., Salditt T., Safinya C. R. Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys J. 1999 Aug;77(2):915–924. doi: 10.1016/S0006-3495(99)76942-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee Y. C., Taraschi T. F., Janes N. Support for the shape concept of lipid structure based on a headgroup volume approach. Biophys J. 1993 Oct;65(4):1429–1432. doi: 10.1016/S0006-3495(93)81206-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
  18. MacDonald R. C., Ashley G. W., Shida M. M., Rakhmanova V. A., Tarahovsky Y. S., Pantazatos D. P., Kennedy M. T., Pozharski E. V., Baker K. A., Jones R. D. Physical and biological properties of cationic triesters of phosphatidylcholine. Biophys J. 1999 Nov;77(5):2612–2629. doi: 10.1016/S0006-3495(99)77095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  20. Miner V. W., Prestegard J. H. Structure of divalent cation-phosphatidic acid complexes as determined by 31P-NMR. Biochim Biophys Acta. 1984 Jul 25;774(2):227–236. doi: 10.1016/0005-2736(84)90296-7. [DOI] [PubMed] [Google Scholar]
  21. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  22. Powell G. L., Marsh D. Polymorphic phase behavior of cardiolipin derivatives studied by 31P NMR and X-ray diffraction. Biochemistry. 1985 Jun 4;24(12):2902–2908. doi: 10.1021/bi00333a013. [DOI] [PubMed] [Google Scholar]
  23. Rainier S., Jain M. K., Ramirez F., Ioannou P. V., Marecek J. F., Wagner R. Phase transition characteristics of diphosphatidyl-glycerol (cardiolipin) and stereoisomeric phosphatidyldiacylglycerol bilayers. Mono- and divalent metal ion effects. Biochim Biophys Acta. 1979 Dec 4;558(2):187–198. doi: 10.1016/0005-2736(79)90059-2. [DOI] [PubMed] [Google Scholar]
  24. Rand R. P., Sengupta S. Cardiolipin forms hexagonal structures with divalent cations. Biochim Biophys Acta. 1972 Feb 11;255(2):484–492. doi: 10.1016/0005-2736(72)90152-6. [DOI] [PubMed] [Google Scholar]
  25. Sankaram M. B., Powell G. L., Marsh D. Effect of acyl chain composition on salt-induced lamellar to inverted hexagonal phase transitions in cardiolipin. Biochim Biophys Acta. 1989 Apr 28;980(3):389–392. doi: 10.1016/0005-2736(89)90331-3. [DOI] [PubMed] [Google Scholar]
  26. Seddon J. M., Cevc G., Kaye R. D., Marsh D. X-ray diffraction study of the polymorphism of hydrated diacyl- and dialkylphosphatidylethanolamines. Biochemistry. 1984 Jun 5;23(12):2634–2644. doi: 10.1021/bi00307a015. [DOI] [PubMed] [Google Scholar]
  27. Seddon J. M., Cevc G., Marsh D. Calorimetric studies of the gel-fluid (L beta-L alpha) and lamellar-inverted hexagonal (L alpha-HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines. Biochemistry. 1983 Mar 1;22(5):1280–1289. doi: 10.1021/bi00274a045. [DOI] [PubMed] [Google Scholar]
  28. Tilcock C. P. Lipid polymorphism. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):109–125. doi: 10.1016/0009-3084(86)90066-6. [DOI] [PubMed] [Google Scholar]
  29. Van Venetie R., Verkleij A. J. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Biochim Biophys Acta. 1981 Jul 20;645(2):262–269. doi: 10.1016/0005-2736(81)90197-8. [DOI] [PubMed] [Google Scholar]
  30. Verkleij A. J., De Maagd R., Leunissen-Bijvelt J., De Kruijff B. Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes. Biochim Biophys Acta. 1982 Jan 22;684(2):255–262. doi: 10.1016/0005-2736(82)90014-1. [DOI] [PubMed] [Google Scholar]
  31. de Kroon A. I., Timmermans J. W., Killian J. A., de Kruijff B. The pH dependence of headgroup and acyl chain structure and dynamics of phosphatidylserine, studied by 2H-NMR. Chem Phys Lipids. 1990 Apr;54(1):33–42. doi: 10.1016/0009-3084(90)90057-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES