Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1465–1477. doi: 10.1016/S0006-3495(00)76398-3

Membrane-induced folding of cecropin A.

L Silvestro 1, P H Axelsen 1
PMCID: PMC1301040  PMID: 10969008

Abstract

Lipid membranes manifest a diverse array of surface forces that can fold and orient an approaching protein. To better understand these forces and their ability to influence protein function, we have used infrared spectroscopy with isotopic editing to characterize the 37-residue membrane-active antimicrobial polypeptide cecropin A as it approached, adsorbed onto, and finally penetrated various lipid membranes. Intermediate stages in this process were isolated for study by the use of internal reflection and Langmuir trough techniques. Results indicate that this peptide adopts well-ordered secondary structure while superficially adsorbed to a membrane surface. Its conformation is predominantly alpha-helical, although some beta structure is likely to be present. The longitudinal axis of the helical structure, and the transverse axes of any beta structure, are preferentially oriented parallel to the membrane surface. The peptide expands the membrane against pressure when it penetrates the membrane surface, but its structure and orientation do not change. These observations indicate that interactions between the peptide and deeper hydrophobic regions of the membrane provide energy to perform thermodynamic work, but separate and distinct interactions between the peptide and superficial components of the membrane are responsible for peptide folding. These results have broad implications for our understanding of the mechanism of action and the specificity of these antimicrobial peptides.

Full Text

The Full Text of this article is available as a PDF (195.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreu D., Merrifield R. B., Steiner H., Boman H. G. N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry. 1985 Mar 26;24(7):1683–1688. doi: 10.1021/bi00328a017. [DOI] [PubMed] [Google Scholar]
  2. Andreu D., Merrifield R. B., Steiner H., Boman H. G. Solid-phase synthesis of cecropin A and related peptides. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6475–6479. doi: 10.1073/pnas.80.21.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelsen P. H., Citra M. J. Orientational order determination by internal reflection infrared spectroscopy. Prog Biophys Mol Biol. 1996;66(3):227–253. doi: 10.1016/s0079-6107(97)00007-2. [DOI] [PubMed] [Google Scholar]
  4. Axelsen P. H., Kaufman B. K., McElhaney R. N., Lewis R. N. The infrared dichroism of transmembrane helical polypeptides. Biophys J. 1995 Dec;69(6):2770–2781. doi: 10.1016/S0006-3495(95)80150-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  6. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Citra M. J., Axelsen P. H. Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy. Biophys J. 1996 Oct;71(4):1796–1805. doi: 10.1016/S0006-3495(96)79380-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  10. Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
  11. Gazit E., Lee W. J., Brey P. T., Shai Y. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 1994 Sep 6;33(35):10681–10692. doi: 10.1021/bi00201a016. [DOI] [PubMed] [Google Scholar]
  12. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell Biochem. 1994;23:363–403. doi: 10.1007/978-1-4615-1863-1_9. [DOI] [PubMed] [Google Scholar]
  13. Hancock R. E., Chapple D. S. Peptide antibiotics. Antimicrob Agents Chemother. 1999 Jun;43(6):1317–1323. doi: 10.1128/aac.43.6.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoffmann J. A. Innate immunity of insects. Curr Opin Immunol. 1995 Feb;7(1):4–10. doi: 10.1016/0952-7915(95)80022-0. [DOI] [PubMed] [Google Scholar]
  15. Holak T. A., Engström A., Kraulis P. J., Lindeberg G., Bennich H., Jones T. A., Gronenborn A. M., Clore G. M. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry. 1988 Oct 4;27(20):7620–7629. doi: 10.1021/bi00420a008. [DOI] [PubMed] [Google Scholar]
  16. Hunt J. F., Earnest T. N., Bousché O., Kalghatgi K., Reilly K., Horváth C., Rothschild K. J., Engelman D. M. A biophysical study of integral membrane protein folding. Biochemistry. 1997 Dec 9;36(49):15156–15176. doi: 10.1021/bi970146j. [DOI] [PubMed] [Google Scholar]
  17. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  18. Kaiser E. T., Kézdy F. J. Amphiphilic secondary structure: design of peptide hormones. Science. 1984 Jan 20;223(4633):249–255. doi: 10.1126/science.6322295. [DOI] [PubMed] [Google Scholar]
  19. Kaiser E. T., Kézdy F. J. Peptides with affinity for membranes. Annu Rev Biophys Biophys Chem. 1987;16:561–581. doi: 10.1146/annurev.bb.16.060187.003021. [DOI] [PubMed] [Google Scholar]
  20. Kaiser E. T., Kézdy F. J. Secondary structures of proteins and peptides in amphiphilic environments. (A review). Proc Natl Acad Sci U S A. 1983 Feb;80(4):1137–1143. doi: 10.1073/pnas.80.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  22. Ladokhin A. S., White S. H. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol. 1999 Jan 29;285(4):1363–1369. doi: 10.1006/jmbi.1998.2346. [DOI] [PubMed] [Google Scholar]
  23. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  24. Mancheño J. M., Oñaderra M., Martínez del Pozo A., Díaz-Achirica P., Andreu D., Rivas L., Gavilanes J. G. Release of lipid vesicle contents by an antibacterial cecropin A-melittin hybrid peptide. Biochemistry. 1996 Jul 30;35(30):9892–9899. doi: 10.1021/bi953058c. [DOI] [PubMed] [Google Scholar]
  25. Marassi F. M., Opella S. J., Juvvadi P., Merrifield R. B. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys J. 1999 Dec;77(6):3152–3155. doi: 10.1016/S0006-3495(99)77145-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marsh D. Quantitation of secondary structure in ATR infrared spectroscopy. Biophys J. 1999 Nov;77(5):2630–2637. doi: 10.1016/S0006-3495(99)77096-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Matsuzaki K., Yoneyama S., Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. doi: 10.1016/S0006-3495(97)78115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mchaourab H. S., Hyde J. S., Feix J. B. Aggregation state of spin-labeled cecropin AD in solution. Biochemistry. 1993 Nov 9;32(44):11895–11902. doi: 10.1021/bi00095a019. [DOI] [PubMed] [Google Scholar]
  29. Mchaourab H. S., Hyde J. S., Feix J. B. Binding and state of aggregation of spin-labeled cecropin AD in phospholipid bilayers: effects of surface charge and fatty acyl chain length. Biochemistry. 1994 May 31;33(21):6691–6699. doi: 10.1021/bi00187a040. [DOI] [PubMed] [Google Scholar]
  30. Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
  31. Milik M., Skolnick J. Spontaneous insertion of polypeptide chains into membranes: a Monte Carlo model. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9391–9395. doi: 10.1073/pnas.89.20.9391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oren Z., Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers. 1998;47(6):451–463. doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  33. Oren Z., Shai Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry. 1997 Feb 18;36(7):1826–1835. doi: 10.1021/bi962507l. [DOI] [PubMed] [Google Scholar]
  34. Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992 Dec 15;31(49):12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
  35. Schwyzer R. In search of the 'bio-active conformation'--is it induced by the target cell membrane? J Mol Recognit. 1995 Jan-Apr;8(1-2):3–8. doi: 10.1002/jmr.300080103. [DOI] [PubMed] [Google Scholar]
  36. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):55–70. doi: 10.1016/s0005-2736(99)00200-x. [DOI] [PubMed] [Google Scholar]
  37. Silvestro L., Axelsen P. H. Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry. 1999 Jan 5;38(1):113–121. doi: 10.1021/bi981289o. [DOI] [PubMed] [Google Scholar]
  38. Silvestro L., Axelsen P. H. Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes. Chem Phys Lipids. 1998 Nov;96(1-2):69–80. doi: 10.1016/s0009-3084(98)00081-4. [DOI] [PubMed] [Google Scholar]
  39. Silvestro L., Gupta K., Weiser J. N., Axelsen P. H. The concentration-dependent membrane activity of cecropin A. Biochemistry. 1997 Sep 23;36(38):11452–11460. doi: 10.1021/bi9630826. [DOI] [PubMed] [Google Scholar]
  40. Silvestro L., Weiser J. N., Axelsen P. H. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob Agents Chemother. 2000 Mar;44(3):602–607. doi: 10.1128/aac.44.3.602-607.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Steiner H., Andreu D., Merrifield R. B. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta. 1988 Apr 7;939(2):260–266. doi: 10.1016/0005-2736(88)90069-7. [DOI] [PubMed] [Google Scholar]
  42. Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
  43. Steiner H. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett. 1982 Jan 25;137(2):283–287. doi: 10.1016/0014-5793(82)80368-2. [DOI] [PubMed] [Google Scholar]
  44. Wang W., Smith D. K., Moulding K., Chen H. M. The dependence of membrane permeability by the antibacterial peptide cecropin B and its analogs, CB-1 and CB-3, on liposomes of different composition. J Biol Chem. 1998 Oct 16;273(42):27438–27448. doi: 10.1074/jbc.273.42.27438. [DOI] [PubMed] [Google Scholar]
  45. White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
  46. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wieprecht T., Beyermann M., Seelig J. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry. 1999 Aug 10;38(32):10377–10387. doi: 10.1021/bi990913+. [DOI] [PubMed] [Google Scholar]
  48. Wimley W. C., Hristova K., Ladokhin A. S., Silvestro L., Axelsen P. H., White S. H. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol. 1998 Apr 17;277(5):1091–1110. doi: 10.1006/jmbi.1998.1640. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES