Abstract
The effects of the anionic tungsten carbonyl complex [W(CO)(5)SC(6)H(5)](-) and its fluorinated analog [W(CO)(5)SC(6)F(5)](-) on the electrical properties of the plasma membrane of mouse myeloma cells were studied by the single-cell electrorotation technique. At micromolar concentrations, both compounds gave rise to an additional antifield peak in the rotational spectra of cells, indicating that the plasma membrane displayed a strong dielectric dispersion. This means that both tungsten derivatives act as lipophilic ions that are able to introduce large amounts of mobile charges into the plasma membrane. The analysis of the rotational spectra allowed the evaluation not only of the passive electric properties of the plasma membrane and cytoplasm, but also of the ion transport parameters, such as the surface concentration, partition coefficient, and translocation rate constant of the lipophilic anions dissolved in the plasma membrane. Comparison of the membrane transport parameters for the two anions showed that the fluorine-substituted analog was more lipophilic, but its translocation across the plasma membrane was slower by at least one order of magnitude than that of the parent hydrogenated anion.
Full Text
The Full Text of this article is available as a PDF (100.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almotrefi A. A., Dzimiri N., Aboul-Enein H. Y., Premkumar L. S. Synthesis and pharmacological evaluation of the antifibrillatory effect of fluorinated derivatives of carazolol and celiprolol: comparison with propranolol. Gen Pharmacol. 1993 May;24(3):721–725. doi: 10.1016/0306-3623(93)90237-r. [DOI] [PubMed] [Google Scholar]
- Arnold W. M., Zimmermann U., Heiden W., Ahlers J. The influence of tetraphenylborates (hydrophobic anions) on yeast cell electro-rotation. Biochim Biophys Acta. 1988 Jul 7;942(1):96–106. doi: 10.1016/0005-2736(88)90278-7. [DOI] [PubMed] [Google Scholar]
- Asuquo A. E., Piddock L. J. Accumulation and killing kinetics of fifteen quinolones for Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 1993 Jun;31(6):865–880. doi: 10.1093/jac/31.6.865. [DOI] [PubMed] [Google Scholar]
- Barnard S., Storr R. C., O'Neill P. M., Park B. K. The effect of fluorine substitution on the physicochemical properties and the analgesic activity of paracetamol. J Pharm Pharmacol. 1993 Aug;45(8):736–744. doi: 10.1111/j.2042-7158.1993.tb07099.x. [DOI] [PubMed] [Google Scholar]
- Benz R., Läuger P. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta. 1977 Jul 14;468(2):245–258. doi: 10.1016/0005-2736(77)90118-3. [DOI] [PubMed] [Google Scholar]
- Benz R. Structural requirement for the rapid movement of charged molecules across membranes. Experiments with tetraphenylborate analogues. Biophys J. 1988 Jul;54(1):25–33. doi: 10.1016/S0006-3495(88)82927-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clary L., Verderone G., Santaella C., Vierling P. Membrane permeability and stability of liposomes made from highly fluorinated double-chain phosphocholines derived from diaminopropanol, serine or ethanolamine. Biochim Biophys Acta. 1997 Aug 14;1328(1):55–64. doi: 10.1016/s0005-2736(97)00076-x. [DOI] [PubMed] [Google Scholar]
- Devoisselle J. M., Vion-Dury J., Confort-Gouny S., Coustaut D., Cozzone P. J. Liposomes containing fluorinated steroids: an analysis based on photon correlation and fluorine-19 nuclear magnetic resonance spectroscopy. J Pharm Sci. 1992 Mar;81(3):249–254. doi: 10.1002/jps.2600810313. [DOI] [PubMed] [Google Scholar]
- Elferink J. G., Deierkauf M. Inhibition of polymorphonuclear leukocyte functions by fluorinated nitrobenzenes. Chem Biol Interact. 1984 Dec;52(2):163–172. doi: 10.1016/0009-2797(84)90070-x. [DOI] [PubMed] [Google Scholar]
- Frézard F., Santaella C., Montisci M. J., Vierling P., Riess J. G. Fluorinated phosphatidylcholine-based liposomes: H+/Na+ permeability, active doxorubicin encapsulation and stability, in human serum. Biochim Biophys Acta. 1994 Aug 24;1194(1):61–68. doi: 10.1016/0005-2736(94)90203-8. [DOI] [PubMed] [Google Scholar]
- Gadras C., Santaella C., Vierling P. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts. J Control Release. 1999 Jan 4;57(1):29–34. doi: 10.1016/s0168-3659(98)00109-6. [DOI] [PubMed] [Google Scholar]
- Gimsa J., Wachner D. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys J. 1998 Aug;75(2):1107–1116. doi: 10.1016/S0006-3495(98)77600-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillod F., Greiner J., Riess J. G. Vesicles made of glycophospholipids with homogeneous (two fluorocarbon or two hydrocarbon) or heterogeneous (one fluorocarbon and one hydrocarbon) hydrophobic double chains. Biochim Biophys Acta. 1996 Jul 25;1282(2):283–292. doi: 10.1016/0005-2736(96)00067-3. [DOI] [PubMed] [Google Scholar]
- Krafft M. P., Riess J. G. Highly fluorinated amphiphiles and colloidal systems, and their applications in the biomedical field. A contribution. Biochimie. 1998 May-Jun;80(5-6):489–514. doi: 10.1016/s0300-9084(00)80016-4. [DOI] [PubMed] [Google Scholar]
- Kürschner M., Nielsen K., Andersen C., Sukhorukov V. L., Schenk W. A., Benz R., Zimmermann U. Interaction of lipophilic ions with the plasma membrane of mammalian cells studies by electrorotation. Biophys J. 1998 Jun;74(6):3031–3043. doi: 10.1016/s0006-3495(98)78011-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lochhead K. M., Zager R. A. Fluorinated anesthetic exposure "activates" the renal cortical sphingomyelinase cascade. Kidney Int. 1998 Aug;54(2):373–381. doi: 10.1046/j.1523-1755.1998.00022.x. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A., Vierling P., Santaella C., Ravily V. Structure and interactive properties of highly fluorinated phospholipid bilayers. Biophys J. 1996 Oct;71(4):1853–1868. doi: 10.1016/S0006-3495(96)79385-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nöth U., Gröhn P., Jork A., Zimmermann U., Haase A., Lutz J. 19F-MRI in vivo determination of the partial oxygen pressure in perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity and different tissues. Magn Reson Med. 1999 Dec;42(6):1039–1047. doi: 10.1002/(sici)1522-2594(199912)42:6<1039::aid-mrm8>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- O'Connell T. M., Gabel S. A., London R. E. Anomeric dependence of fluorodeoxyglucose transport in human erythrocytes. Biochemistry. 1994 Sep 13;33(36):10985–10992. doi: 10.1021/bi00202a018. [DOI] [PubMed] [Google Scholar]
- Pethig R., Kell D. B. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987 Aug;32(8):933–970. doi: 10.1088/0031-9155/32/8/001. [DOI] [PubMed] [Google Scholar]
- Ringel I., Jaffe D., Alerhand S., Boye O., Muzaffar A., Brossi A. Fluorinated colchicinoids: antitubulin and cytotoxic properties. J Med Chem. 1991 Nov;34(11):3334–3338. doi: 10.1021/jm00115a026. [DOI] [PubMed] [Google Scholar]
- Ryser C., Wang J., Mimietz S., Zimmermann U. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: evidence for a multifolded tonoplast. J Membr Biol. 1999 Mar 15;168(2):183–197. doi: 10.1007/s002329900508. [DOI] [PubMed] [Google Scholar]
- Sukhorukov V. L., Zimmermann U. Electrorotation of erythrocytes treated with dipicrylamine: mobile charges within the membrane show their "signature" in rotational spectra. J Membr Biol. 1996 Sep;153(2):161–169. doi: 10.1007/s002329900119. [DOI] [PubMed] [Google Scholar]
- Tang P., Yan B., Xu Y. Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys J. 1997 Apr;72(4):1676–1682. doi: 10.1016/S0006-3495(97)78813-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turin L., Béhé P., Plonsky I., Dunina-Barkovskaya A. Hydrophobic ion transfer between membranes of adjacent hepatocytes: a possible probe of tight junction structure. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9365–9369. doi: 10.1073/pnas.88.20.9365. [DOI] [PMC free article] [PubMed] [Google Scholar]