Abstract
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.
Full Text
The Full Text of this article is available as a PDF (156.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews M. A., Maughan D. W., Nosek T. M., Godt R. E. Ion-specific and general ionic effects on contraction of skinned fast-twitch skeletal muscle from the rabbit. J Gen Physiol. 1991 Dec;98(6):1105–1125. doi: 10.1085/jgp.98.6.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arner A., Goody R. S., Rapp G., Rüegg J. C. Relaxation of chemically skinned guinea pig taenia coli smooth muscle from rigor by photolytic release of adenosine-5'-triphosphate. J Muscle Res Cell Motil. 1987 Oct;8(5):377–385. doi: 10.1007/BF01578427. [DOI] [PubMed] [Google Scholar]
- Barsotti R. J., Ferenczi M. A. Kinetics of ATP hydrolysis and tension production in skinned cardiac muscle of the guinea pig. J Biol Chem. 1988 Nov 15;263(32):16750–16756. [PubMed] [Google Scholar]
- Brozovich F. V., Yamakawa M. Thin filament regulation of force activation is not essential in single vascular smooth muscle cells. Am J Physiol. 1995 Jan;268(1 Pt 1):C237–C242. doi: 10.1152/ajpcell.1995.268.1.C237. [DOI] [PubMed] [Google Scholar]
- Brozovich F. V., Yates L. D., Gordon A. M. Muscle force and stiffness during activation and relaxation. Implications for the actomyosin ATPase. J Gen Physiol. 1988 Mar;91(3):399–420. doi: 10.1085/jgp.91.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dantzig J. A., Barsotti R. J., Manz S., Sweeney H. L., Goldman Y. E. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys J. 1999 Jul;77(1):386–397. doi: 10.1016/S0006-3495(99)76897-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dantzig J. A., Goldman Y. E., Millar N. C., Lacktis J., Homsher E. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres. J Physiol. 1992;451:247–278. doi: 10.1113/jphysiol.1992.sp019163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuglsang A., Khromov A., Török K., Somlyo A. V., Somlyo A. P. Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil. 1993 Dec;14(6):666–677. doi: 10.1007/BF00141563. [DOI] [PubMed] [Google Scholar]
- Geeves M. A. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem J. 1991 Feb 15;274(Pt 1):1–14. doi: 10.1042/bj2740001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman Y. E., Simmons R. M. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol. 1984 May;350:497–518. doi: 10.1113/jphysiol.1984.sp015215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gollub J., Cremo C. R., Cooke R. ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosin. Nat Struct Biol. 1996 Sep;3(9):796–802. doi: 10.1038/nsb0996-796. [DOI] [PubMed] [Google Scholar]
- Goody R. S., Hofman W., Konrad M. On the structure of the myosin-ADP-mg complex. FEBS Lett. 1981 Jun 29;129(1):169–172. doi: 10.1016/0014-5793(81)80782-x. [DOI] [PubMed] [Google Scholar]
- Hasegawa Y., Morita F. Role of 17-kDa essential light chain isoforms of aorta smooth muscle myosin. J Biochem. 1992 Jun;111(6):804–809. doi: 10.1093/oxfordjournals.jbchem.a123840. [DOI] [PubMed] [Google Scholar]
- He Z. H., Ferenczi M. A., Brune M., Trentham D. R., Webb M. R., Somlyo A. P., Somlyo A. V. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle. Biophys J. 1998 Dec;75(6):3031–3040. doi: 10.1016/S0006-3495(98)77744-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
- Horiuti K., Somlyo A. V., Goldman Y. E., Somlyo A. P. Kinetics of contraction initiated by flash photolysis of caged adenosine triphosphate in tonic and phasic smooth muscles. J Gen Physiol. 1989 Oct;94(4):769–781. doi: 10.1085/jgp.94.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huxley A. F., Simmons R. M. Proposed mechanism of force generation in striated muscle. Nature. 1971 Oct 22;233(5321):533–538. doi: 10.1038/233533a0. [DOI] [PubMed] [Google Scholar]
- Ishijima A., Kojima H., Funatsu T., Tokunaga M., Higuchi H., Tanaka H., Yanagida T. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell. 1998 Jan 23;92(2):161–171. doi: 10.1016/s0092-8674(00)80911-3. [DOI] [PubMed] [Google Scholar]
- Itoh T., Kanmura Y., Kuriyama H. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery. J Physiol. 1986 Jul;376:231–252. doi: 10.1113/jphysiol.1986.sp016151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang M. J., Morgan K. G. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am J Physiol. 1987 Dec;253(6 Pt 2):H1365–H1371. doi: 10.1152/ajpheart.1987.253.6.H1365. [DOI] [PubMed] [Google Scholar]
- Kawai M., Brandt P. W. Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil. 1980 Sep;1(3):279–303. doi: 10.1007/BF00711932. [DOI] [PubMed] [Google Scholar]
- Kawai M., Güth K., Winnikes K., Haist C., Rüegg J. C. The effect of inorganic phosphate on the ATP hydrolysis rate and the tension transients in chemically skinned rabbit psoas fibers. Pflugers Arch. 1987 Jan;408(1):1–9. doi: 10.1007/BF00581833. [DOI] [PubMed] [Google Scholar]
- Kawai M., Halvorson H. R. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J. 1991 Feb;59(2):329–342. doi: 10.1016/S0006-3495(91)82227-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai M., Zhao Y. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J. 1993 Aug;65(2):638–651. doi: 10.1016/S0006-3495(93)81109-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley C. A., Takahashi M., Yu J. H., Adelstein R. S. An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem. 1993 Jun 15;268(17):12848–12854. [PubMed] [Google Scholar]
- Khromov A. S., Somlyo A. V., Somlyo A. P. Nucleotide binding by actomyosin as a determinant of relaxation kinetics of rabbit phasic and tonic smooth muscle. J Physiol. 1996 May 1;492(Pt 3):669–673. doi: 10.1113/jphysiol.1996.sp021336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khromov A., Somlyo A. V., Trentham D. R., Zimmermann B., Somlyo A. P. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study. Biophys J. 1995 Dec;69(6):2611–2622. doi: 10.1016/S0006-3495(95)80132-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitamura K., Tokunaga M., Iwane A. H., Yanagida T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature. 1999 Jan 14;397(6715):129–134. doi: 10.1038/16403. [DOI] [PubMed] [Google Scholar]
- Lombardi V., Piazzesi G., Linari M. Rapid regeneration of the actin-myosin power stroke in contracting muscle. Nature. 1992 Feb 13;355(6361):638–641. doi: 10.1038/355638a0. [DOI] [PubMed] [Google Scholar]
- Malmqvist U., Arner A. Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflugers Arch. 1991 Jul;418(6):523–530. doi: 10.1007/BF00370566. [DOI] [PubMed] [Google Scholar]
- Marston S. B., Taylor E. W. Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles. J Mol Biol. 1980 Jun 5;139(4):573–600. doi: 10.1016/0022-2836(80)90050-9. [DOI] [PubMed] [Google Scholar]
- Martin H., Barsotti R. J. Relaxation from rigor of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP. Biophys J. 1994 Apr;66(4):1115–1128. doi: 10.1016/S0006-3495(94)80892-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morano I., Koehlen S., Haase H., Erb G., Baltas L. G., Rimbach S., Wallwiener D., Bastert G. Alternative splicing and cycling kinetics of myosin change during hypertrophy of human smooth muscle cells. J Cell Biochem. 1997 Feb;64(2):171–181. doi: 10.1002/(sici)1097-4644(199702)64:2<171::aid-jcb1>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Nabeshima Y., Nabeshima Y., Nonomura Y., Fujii-Kuriyama Y. Nonmuscle and smooth muscle myosin light chain mRNAs are generated from a single gene by the tissue-specific alternative RNA splicing. J Biol Chem. 1987 Aug 5;262(22):10608–10612. [PubMed] [Google Scholar]
- Nishiye E., Somlyo A. V., Török K., Somlyo A. P. The effects of MgADP on cross-bridge kinetics: a laser flash photolysis study of guinea-pig smooth muscle. J Physiol. 1993 Jan;460:247–271. doi: 10.1113/jphysiol.1993.sp019470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osterman A., Arner A. Effects of inorganic phosphate on cross-bridge kinetics at different activation levels in skinned guinea-pig smooth muscle. J Physiol. 1995 Apr 15;484(Pt 2):369–383. doi: 10.1113/jphysiol.1995.sp020671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pate E., Franks-Skiba K., Cooke R. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke. Biophys J. 1998 Jan;74(1):369–380. doi: 10.1016/S0006-3495(98)77794-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piazzesi G., Linari M., Lombardi V. Kinetics of regeneration of cross-bridge power stroke in shortening muscle. Adv Exp Med Biol. 1993;332:691–701. doi: 10.1007/978-1-4615-2872-2_61. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Sellers J. R. Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem. 1985 Dec 15;260(29):15815–15819. [PubMed] [Google Scholar]
- Shue G. H., Brozovich F. V. The frequency response of smooth muscle stiffness during Ca2+-activated contraction. Biophys J. 1999 May;76(5):2361–2369. doi: 10.1016/S0006-3495(99)77393-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. P., Barsotti R. J. A computer-based servo system for controlling isotonic contractions of muscle. Am J Physiol. 1993 Nov;265(5 Pt 1):C1424–C1432. doi: 10.1152/ajpcell.1993.265.5.C1424. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]
- Somlyo A. V., Goldman Y. E., Fujimori T., Bond M., Trentham D. R., Somlyo A. P. Cross-bridge kinetics, cooperativity, and negatively strained cross-bridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol. 1988 Feb;91(2):165–192. doi: 10.1085/jgp.91.2.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweeney H. L., Rosenfeld S. S., Brown F., Faust L., Smith J., Xing J., Stein L. A., Sellers J. R. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem. 1998 Mar 13;273(11):6262–6270. doi: 10.1074/jbc.273.11.6262. [DOI] [PubMed] [Google Scholar]
- Szymanski P. T., Chacko T. K., Rovner A. S., Goyal R. K. Differences in contractile protein content and isoforms in phasic and tonic smooth muscles. Am J Physiol. 1998 Sep;275(3 Pt 1):C684–C692. doi: 10.1152/ajpcell.1998.275.3.C684. [DOI] [PubMed] [Google Scholar]
- Warshaw D. M., Fay F. S. Cross-bridge elasticity in single smooth muscle cells. J Gen Physiol. 1983 Aug;82(2):157–199. doi: 10.1085/jgp.82.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White S., Martin A. F., Periasamy M. Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am J Physiol. 1993 May;264(5 Pt 1):C1252–C1258. doi: 10.1152/ajpcell.1993.264.5.C1252. [DOI] [PubMed] [Google Scholar]
- Whittaker M., Wilson-Kubalek E. M., Smith J. E., Faust L., Milligan R. A., Sweeney H. L. A 35-A movement of smooth muscle myosin on ADP release. Nature. 1995 Dec 14;378(6558):748–751. doi: 10.1038/378748a0. [DOI] [PubMed] [Google Scholar]
- Yu M. F., Gorenne I., Su X., Moreland R. S., Kotlikoff M. I. Sodium hydrosulfite contractions of smooth muscle are calcium and myosin phosphorylation independent. Am J Physiol. 1998 Nov;275(5 Pt 1):L976–L982. doi: 10.1152/ajplung.1998.275.5.L976. [DOI] [PubMed] [Google Scholar]