Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1530–1536. doi: 10.1016/S0006-3495(00)76404-6

Shear-induced assembly of lambda-phage DNA.

C Haber 1, D Wirtz 1
PMCID: PMC1301046  PMID: 10969014

Abstract

Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of lambda-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted lambda-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing the probability of contact between molecules and by stretching the molecules, which exposes the cohesive ends of the otherwise undeformed lambda-phage DNA molecules. We apply this principle to enhance the kinetics and extent of DNA concatenation in the presence of ligase. This novel approach to controlled DNA assembly could form the basis for improved approaches to gene-chip and recombinant DNA technologies and provide new insight into the rheology of associating polymers.

Full Text

The Full Text of this article is available as a PDF (199.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann C. G., Smith S. B., Bloomfield V. A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6185–6190. doi: 10.1073/pnas.94.12.6185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dugaiczyk A., Hedgpeth J., Boyer H. W., Goodman H. M. Physical identity of the SV40 deoxyribonucleic acid sequence recognized by the Eco RI restriction endonuclease and modification methylase. Biochemistry. 1974 Jan 29;13(3):503–512. doi: 10.1021/bi00700a016. [DOI] [PubMed] [Google Scholar]
  3. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  4. Hengen P. N. Shearing DNA for genomic library construction. Trends Biochem Sci. 1997 Jul;22(7):273–274. doi: 10.1016/s0968-0004(97)01080-3. [DOI] [PubMed] [Google Scholar]
  5. LeDuc P., Haber C., Bao G., Wirtz D. Dynamics of individual flexible polymers in a shear flow. Nature. 1999 Jun 10;399(6736):564–566. doi: 10.1038/21148. [DOI] [PubMed] [Google Scholar]
  6. Ma L., Xu J., Coulombe P. A., Wirtz D. Keratin filament suspensions show unique micromechanical properties. J Biol Chem. 1999 Jul 2;274(27):19145–19151. doi: 10.1074/jbc.274.27.19145. [DOI] [PubMed] [Google Scholar]
  7. Marziali A., Willis T. D., Davis R. W. An arrayable flow-through microcentrifuge for high-throughput instrumentation. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):61–66. doi: 10.1073/pnas.96.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Michalet X., Ekong R., Fougerousse F., Rousseaux S., Schurra C., Hornigold N., van Slegtenhorst M., Wolfe J., Povey S., Beckmann J. S. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science. 1997 Sep 5;277(5331):1518–1523. doi: 10.1126/science.277.5331.1518. [DOI] [PubMed] [Google Scholar]
  9. Oefner P. J., Hunicke-Smith S. P., Chiang L., Dietrich F., Mulligan J., Davis R. W. Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. Nucleic Acids Res. 1996 Oct 15;24(20):3879–3886. doi: 10.1093/nar/24.20.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Parra I., Windle B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet. 1993 Sep;5(1):17–21. doi: 10.1038/ng0993-17. [DOI] [PubMed] [Google Scholar]
  11. Pecora R. DNA: a model compound for solution studies of macromolecules. Science. 1991 Feb 22;251(4996):893–898. doi: 10.1126/science.2000490. [DOI] [PubMed] [Google Scholar]
  12. Petka W. A., Harden J. L., McGrath K. P., Wirtz D., Tirrell D. A. Reversible hydrogels from self-assembling artificial proteins. Science. 1998 Jul 17;281(5375):389–392. doi: 10.1126/science.281.5375.389. [DOI] [PubMed] [Google Scholar]
  13. Révet B., Fourcade A. Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies. Nucleic Acids Res. 1998 May 1;26(9):2092–2097. doi: 10.1093/nar/26.9.2092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982 Dec 25;162(4):729–773. doi: 10.1016/0022-2836(82)90546-0. [DOI] [PubMed] [Google Scholar]
  15. Smith D. E., Babcock H. P., Chu S. Single-polymer dynamics in steady shear flow. Science. 1999 Mar 12;283(5408):1724–1727. doi: 10.1126/science.283.5408.1724. [DOI] [PubMed] [Google Scholar]
  16. Sobel E. S., Harpst J. A. Effects of Na+ on the persistence length and excluded volume of T7 bacteriophage DNA. Biopolymers. 1991 Nov;31(13):1559–1564. doi: 10.1002/bip.360311311. [DOI] [PubMed] [Google Scholar]
  17. Thorstenson Y. R., Hunicke-Smith S. P., Oefner P. J., Davis R. W. An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res. 1998 Aug;8(8):848–855. doi: 10.1101/gr.8.8.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang W., Lin J., Schwartz D. C. Scanning force microscopy of DNA molecules elongated by convective fluid flow in an evaporating droplet. Biophys J. 1998 Jul;75(1):513–520. doi: 10.1016/S0006-3495(98)77540-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zeng L. W., Kreitman M. Simple strategy for sequencing cDNA clones. Biotechniques. 1996 Sep;21(3):446–452. doi: 10.2144/96213st01. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES