Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1561–1572. doi: 10.1016/S0006-3495(00)76407-1

High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.

H M Wu 1, M Rätsep 1, C S Young 1, R Jankowiak 1, R E Blankenship 1, G J Small 1
PMCID: PMC1301049  PMID: 10969017

Abstract

Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of -0.44 and -0.54 cm(-1)/MPa were observed for the chlorosome BChl c Q(y)-band at 100 K and the lowest Q(y)-exciton level at 12 K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl c monomer, fDeltamu++ = 0.35 D, where Deltamu+ is the dipole moment change for the Q(y) transition and f is the local field correction factor. The data establish that Deltamu+ is dominated by the matrix-induced contribution. The change in polarizability (Deltaalpha) for the Q(y) transition of the BChl c monomer is estimated at 19 A(3), which is essentially identical to that of the Chl a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10(5) V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl c aggregates.

Full Text

The Full Text of this article is available as a PDF (138.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blankenship R. E., Cheng P., Causgrove T. P., Brune D. C., Wang SH-H, Choh J-U, Wang J. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol. 1993;57(1):103–107. doi: 10.1111/j.1751-1097.1993.tb02263.x. [DOI] [PubMed] [Google Scholar]
  2. Brune D. C., Nozawa T., Blankenship R. E. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry. 1987 Dec 29;26(26):8644–8652. doi: 10.1021/bi00400a023. [DOI] [PubMed] [Google Scholar]
  3. Bystrova M. I., Mal'gosheva I. N., Krasnovskii A. A. Issledovanie molekuliarnogo mekhanizma samosborki agregirovannykh form bakteriokhlorofilla c. Mol Biol (Mosk) 1979 May-Jun;13(3):582–594. [PubMed] [Google Scholar]
  4. Cruden D. L., Stanier R. Y. The characterization of chlorobium vesicles and membranes isolated from green bacteria. Arch Mikrobiol. 1970;72(2):115–134. doi: 10.1007/BF00409518. [DOI] [PubMed] [Google Scholar]
  5. Fetisova Z. G., Mauring K. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett. 1992 Aug 3;307(3):371–374. doi: 10.1016/0014-5793(92)80715-s. [DOI] [PubMed] [Google Scholar]
  6. Fetisova Z. G., Mauring K. Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett. 1993 May 24;323(1-2):159–162. doi: 10.1016/0014-5793(93)81470-k. [DOI] [PubMed] [Google Scholar]
  7. Fetisova Z., Freiberg A., Mauring K., Novoderezhkin V., Taisova A., Timpmann K. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J. 1996 Aug;71(2):995–1010. doi: 10.1016/S0006-3495(96)79301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fidy J., Balog E., Köhler M. Proteins in electric fields and pressure fields: experimental results. Biochim Biophys Acta. 1998 Aug 18;1386(2):289–303. doi: 10.1016/s0167-4838(98)00099-5. [DOI] [PubMed] [Google Scholar]
  9. Freer A., Prince S., Sauer K., Papiz M., Hawthornthwaite-Lawless A., McDermott G., Cogdell R., Isaacs N. W. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure. 1996 Apr 15;4(4):449–462. doi: 10.1016/s0969-2126(96)00050-0. [DOI] [PubMed] [Google Scholar]
  10. Gerola P. D., Olson J. M. A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta. 1986 Jan 28;848(1):69–76. doi: 10.1016/0005-2728(86)90161-1. [DOI] [PubMed] [Google Scholar]
  11. Kador L, Jahn S, Haarer D, Silbey R. Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy. Phys Rev B Condens Matter. 1990 Jun 15;41(17):12215–12226. doi: 10.1103/physrevb.41.12215. [DOI] [PubMed] [Google Scholar]
  12. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  13. Köhler M., Friedrich J., Fidy J. Proteins in electric fields and pressure fields: basic aspects. Biochim Biophys Acta. 1998 Aug 18;1386(2):255–288. doi: 10.1016/s0167-4838(98)00098-3. [DOI] [PubMed] [Google Scholar]
  14. Nozawa T., Noguchi T., Tasumi M. Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. J Biochem. 1990 Nov;108(5):737–740. doi: 10.1093/oxfordjournals.jbchem.a123274. [DOI] [PubMed] [Google Scholar]
  15. Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olson J. M., Philipson K. D., Sauer K. Circular dichroism and absorption spectra of bacteriochlorophyll-protein and reaction center complexes from Chlorobium thiosulfatophilum. Biochim Biophys Acta. 1973 Jan 18;292(1):206–217. doi: 10.1016/0005-2728(73)90265-x. [DOI] [PubMed] [Google Scholar]
  17. Savikhin S., van Noort P. I., Zhu Y., Lin S., Blankenship R. E., Struve W. S. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys. 1995 May 15;194(2-3):245–258. doi: 10.1016/0301-0104(95)00019-k. [DOI] [PubMed] [Google Scholar]
  18. Somsen O. J., van Grondelle R., van Amerongen H. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J. 1996 Oct;71(4):1934–1951. doi: 10.1016/S0006-3495(96)79392-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Staehelin L. A., Golecki J. R., Drews G. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta. 1980 Jan 4;589(1):30–45. doi: 10.1016/0005-2728(80)90130-9. [DOI] [PubMed] [Google Scholar]
  20. Wang J., Brune D. C., Blankenship R. E. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta. 1990 Feb 22;1015(3):457–463. doi: 10.1016/0005-2728(90)90079-j. [DOI] [PubMed] [Google Scholar]
  21. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Noort P. I., Zhu Y., LoBrutto R., Blankenship R. E. Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J. 1997 Jan;72(1):316–325. doi: 10.1016/S0006-3495(97)78670-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES