Abstract
Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of -0.44 and -0.54 cm(-1)/MPa were observed for the chlorosome BChl c Q(y)-band at 100 K and the lowest Q(y)-exciton level at 12 K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl c monomer, fDeltamu++ = 0.35 D, where Deltamu+ is the dipole moment change for the Q(y) transition and f is the local field correction factor. The data establish that Deltamu+ is dominated by the matrix-induced contribution. The change in polarizability (Deltaalpha) for the Q(y) transition of the BChl c monomer is estimated at 19 A(3), which is essentially identical to that of the Chl a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10(5) V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl c aggregates.
Full Text
The Full Text of this article is available as a PDF (138.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blankenship R. E., Cheng P., Causgrove T. P., Brune D. C., Wang SH-H, Choh J-U, Wang J. Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol. 1993;57(1):103–107. doi: 10.1111/j.1751-1097.1993.tb02263.x. [DOI] [PubMed] [Google Scholar]
- Brune D. C., Nozawa T., Blankenship R. E. Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry. 1987 Dec 29;26(26):8644–8652. doi: 10.1021/bi00400a023. [DOI] [PubMed] [Google Scholar]
- Bystrova M. I., Mal'gosheva I. N., Krasnovskii A. A. Issledovanie molekuliarnogo mekhanizma samosborki agregirovannykh form bakteriokhlorofilla c. Mol Biol (Mosk) 1979 May-Jun;13(3):582–594. [PubMed] [Google Scholar]
- Cruden D. L., Stanier R. Y. The characterization of chlorobium vesicles and membranes isolated from green bacteria. Arch Mikrobiol. 1970;72(2):115–134. doi: 10.1007/BF00409518. [DOI] [PubMed] [Google Scholar]
- Fetisova Z. G., Mauring K. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett. 1992 Aug 3;307(3):371–374. doi: 10.1016/0014-5793(92)80715-s. [DOI] [PubMed] [Google Scholar]
- Fetisova Z. G., Mauring K. Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett. 1993 May 24;323(1-2):159–162. doi: 10.1016/0014-5793(93)81470-k. [DOI] [PubMed] [Google Scholar]
- Fetisova Z., Freiberg A., Mauring K., Novoderezhkin V., Taisova A., Timpmann K. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J. 1996 Aug;71(2):995–1010. doi: 10.1016/S0006-3495(96)79301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fidy J., Balog E., Köhler M. Proteins in electric fields and pressure fields: experimental results. Biochim Biophys Acta. 1998 Aug 18;1386(2):289–303. doi: 10.1016/s0167-4838(98)00099-5. [DOI] [PubMed] [Google Scholar]
- Freer A., Prince S., Sauer K., Papiz M., Hawthornthwaite-Lawless A., McDermott G., Cogdell R., Isaacs N. W. Pigment-pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure. 1996 Apr 15;4(4):449–462. doi: 10.1016/s0969-2126(96)00050-0. [DOI] [PubMed] [Google Scholar]
- Gerola P. D., Olson J. M. A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta. 1986 Jan 28;848(1):69–76. doi: 10.1016/0005-2728(86)90161-1. [DOI] [PubMed] [Google Scholar]
- Kador L, Jahn S, Haarer D, Silbey R. Contributions of the electrostatic and the dispersion interaction to the solvent shift in a dye-polymer system, as investigated by hole-burning spectroscopy. Phys Rev B Condens Matter. 1990 Jun 15;41(17):12215–12226. doi: 10.1103/physrevb.41.12215. [DOI] [PubMed] [Google Scholar]
- Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
- Köhler M., Friedrich J., Fidy J. Proteins in electric fields and pressure fields: basic aspects. Biochim Biophys Acta. 1998 Aug 18;1386(2):255–288. doi: 10.1016/s0167-4838(98)00098-3. [DOI] [PubMed] [Google Scholar]
- Nozawa T., Noguchi T., Tasumi M. Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus. J Biochem. 1990 Nov;108(5):737–740. doi: 10.1093/oxfordjournals.jbchem.a123274. [DOI] [PubMed] [Google Scholar]
- Olsen G. J., Woese C. R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994 Jan;176(1):1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson J. M., Philipson K. D., Sauer K. Circular dichroism and absorption spectra of bacteriochlorophyll-protein and reaction center complexes from Chlorobium thiosulfatophilum. Biochim Biophys Acta. 1973 Jan 18;292(1):206–217. doi: 10.1016/0005-2728(73)90265-x. [DOI] [PubMed] [Google Scholar]
- Savikhin S., van Noort P. I., Zhu Y., Lin S., Blankenship R. E., Struve W. S. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys. 1995 May 15;194(2-3):245–258. doi: 10.1016/0301-0104(95)00019-k. [DOI] [PubMed] [Google Scholar]
- Somsen O. J., van Grondelle R., van Amerongen H. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. Biophys J. 1996 Oct;71(4):1934–1951. doi: 10.1016/S0006-3495(96)79392-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin L. A., Golecki J. R., Drews G. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta. 1980 Jan 4;589(1):30–45. doi: 10.1016/0005-2728(80)90130-9. [DOI] [PubMed] [Google Scholar]
- Wang J., Brune D. C., Blankenship R. E. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta. 1990 Feb 22;1015(3):457–463. doi: 10.1016/0005-2728(90)90079-j. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Noort P. I., Zhu Y., LoBrutto R., Blankenship R. E. Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J. 1997 Jan;72(1):316–325. doi: 10.1016/S0006-3495(97)78670-3. [DOI] [PMC free article] [PubMed] [Google Scholar]