Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1587–1600. doi: 10.1016/S0006-3495(00)76409-5

Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis.

H Kikuchi 1, H Wako 1, K Yura 1, M Go 1, M Mimuro 1
PMCID: PMC1301051  PMID: 10969019

Abstract

Phycobiliproteins are basic building blocks of phycobilisomes, a supra-molecular assembly for the light-capturing function of photosynthesis in cyanobacteria and red algae. One functional form of phycobiliproteins is a trimeric form consisting of three identical units having C(3) symmetry, with each unit composed of two kinds of subunits, the alpha-subunit and beta-subunit. These subunits have similar chain folds and can be divided into either globin-like or X-Y helices domains. We studied the significance of this two-domain structure for their assembled structures and biological function (light-absorption) using a normal mode analysis to investigate dynamic aspects of their three-dimensional structures. We used C-phycocyanin (C-PC) as an example, and focused on the interactions between the two domains. The normal mode analysis was carried out for the following two cases: 1) the whole subunit, including the two domains; and 2) the globin-like domain alone. By comparing the dynamic properties, such as correlative movements between residues and the fluctuations of individual residues, we found that the X-Y helices domain plays an important role not only in the C(3) symmetry assemblies of the subunits in phycobiliproteins, but also in stabilizing the light absorption property by suppressing the fluctuation of the specific Asp residues near the chromophore. Interestingly, the conformation of the X-Y helices domain corresponds to that of a module in pyruvate phosphate dikinase (PPDK). The module in PPDK is involved in the interactions of two domains, just as the X-Y helices domain is involved in the interactions of two subunits. Finally, we discuss the mechanical construction of the C-PC subunits based on the normal mode analysis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  2. Brejc K., Ficner R., Huber R., Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol. 1995 Jun 2;249(2):424–440. doi: 10.1006/jmbi.1995.0307. [DOI] [PubMed] [Google Scholar]
  3. Chang W. R., Jiang T., Wan Z. L., Zhang J. P., Yang Z. X., Liang D. C. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 A resolution. J Mol Biol. 1996 Oct 11;262(5):721–731. doi: 10.1006/jmbi.1996.0547. [DOI] [PubMed] [Google Scholar]
  4. Duerring M., Huber R., Bode W., Ruembeli R., Zuber H. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 A. J Mol Biol. 1990 Feb 5;211(3):633–644. doi: 10.1016/0022-2836(90)90270-v. [DOI] [PubMed] [Google Scholar]
  5. Duerring M., Schmidt G. B., Huber R. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 A resolution. J Mol Biol. 1991 Feb 5;217(3):577–592. doi: 10.1016/0022-2836(91)90759-y. [DOI] [PubMed] [Google Scholar]
  6. Ficner R., Huber R. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur J Biochem. 1993 Nov 15;218(1):103–106. doi: 10.1111/j.1432-1033.1993.tb18356.x. [DOI] [PubMed] [Google Scholar]
  7. Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
  8. Gantt E., Conti S. F. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol. 1966 Jun;29(3):423–434. doi: 10.1083/jcb.29.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  10. Glazer A. N. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77. doi: 10.1146/annurev.bb.14.060185.000403. [DOI] [PubMed] [Google Scholar]
  11. Go M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature. 1981 May 7;291(5810):90–92. doi: 10.1038/291090a0. [DOI] [PubMed] [Google Scholar]
  12. Go M. Modular structural units, exons, and function in chicken lysozyme. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1964–1968. doi: 10.1073/pnas.80.7.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Go M., Nosaka M. Protein architecture and the origin of introns. Cold Spring Harb Symp Quant Biol. 1987;52:915–924. doi: 10.1101/sqb.1987.052.01.100. [DOI] [PubMed] [Google Scholar]
  14. Go N., Noguti T., Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696–3700. doi: 10.1073/pnas.80.12.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grossman A. R., Schaefer M. R., Chiang G. G., Collier J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev. 1993 Sep;57(3):725–749. doi: 10.1128/mr.57.3.725-749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herzberg O., Chen C. C., Kapadia G., McGuire M., Carroll L. J., Noh S. J., Dunaway-Mariano D. Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2652–2657. doi: 10.1073/pnas.93.7.2652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hofmann E., Wrench P. M., Sharples F. P., Hiller R. G., Welte W., Diederichs K. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science. 1996 Jun 21;272(5269):1788–1791. doi: 10.1126/science.272.5269.1788. [DOI] [PubMed] [Google Scholar]
  18. Jiang T., Zhang J., Liang D. Structure and function of chromophores in R-Phycoerythrin at 1.9 A resolution. Proteins. 1999 Feb 1;34(2):224–231. [PubMed] [Google Scholar]
  19. Karrasch S., Bullough P. A., Ghosh R. The 8.5 A projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J. 1995 Feb 15;14(4):631–638. doi: 10.1002/j.1460-2075.1995.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  21. Levitt M., Sander C., Stern P. S. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol Biol. 1985 Feb 5;181(3):423–447. doi: 10.1016/0022-2836(85)90230-x. [DOI] [PubMed] [Google Scholar]
  22. Nishikawa T., Go N. Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property. Proteins. 1987;2(4):308–329. doi: 10.1002/prot.340020407. [DOI] [PubMed] [Google Scholar]
  23. Noguti T., Sakakibara H., Go M. Localization of hydrogen-bonds within modules in barnase. Proteins. 1993 Aug;16(4):357–363. doi: 10.1002/prot.340160405. [DOI] [PubMed] [Google Scholar]
  24. Phillips S. E. Structure and refinement of oxymyoglobin at 1.6 A resolution. J Mol Biol. 1980 Oct 5;142(4):531–554. doi: 10.1016/0022-2836(80)90262-4. [DOI] [PubMed] [Google Scholar]
  25. Reuter W., Wiegand G., Huber R., Than M. E. Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1363–1368. doi: 10.1073/pnas.96.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ritter S., Hiller R. G., Wrench P. M., Welte W., Diederichs K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J Struct Biol. 1999 Jun 15;126(2):86–97. doi: 10.1006/jsbi.1999.4106. [DOI] [PubMed] [Google Scholar]
  27. Sato Y., Niimura Y., Yura K., Go M. Module-intron correlation and intron sliding in family F/10 xylanase genes. Gene. 1999 Sep 30;238(1):93–101. doi: 10.1016/s0378-1119(99)00321-2. [DOI] [PubMed] [Google Scholar]
  28. Schirmer T., Bode W., Huber R., Sidler W., Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol. 1985 Jul 20;184(2):257–277. doi: 10.1016/0022-2836(85)90379-1. [DOI] [PubMed] [Google Scholar]
  29. Schirmer T., Huber R., Schneider M., Bode W., Miller M., Hackert M. L. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol. 1986 Apr 20;188(4):651–676. doi: 10.1016/s0022-2836(86)80013-4. [DOI] [PubMed] [Google Scholar]
  30. Wako H. Dynamic structures of globular proteins with respect to correlative movements of residues calculated in the normal mode analysis. J Protein Chem. 1989 Oct;8(5):589–607. doi: 10.1007/BF01025600. [DOI] [PubMed] [Google Scholar]
  31. Wako H. Inspection of three-dimensional structures of proteins with dynamical information from the normal mode analysis. Protein Seq Data Anal. 1989 Apr;2(3):175–180. [PubMed] [Google Scholar]
  32. de Marsac N. T., Cohen-bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1635–1639. doi: 10.1073/pnas.74.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES