Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1637–1654. doi: 10.1016/S0006-3495(00)76414-9

Salt effects on ionization equilibria of histidines in myoglobin.

Y H Kao 1, C A Fitch 1, S Bhattacharya 1, C J Sarkisian 1, J T Lecomte 1, B García-Moreno E 1
PMCID: PMC1301056  PMID: 10969024

Abstract

The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.

Full Text

The Full Text of this article is available as a PDF (195.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Ueda T., Iwashita H., Hashimoto Y., Motoshima H., Tanaka Y., Imoto T. Effect of salt concentration on the pKa of acidic residues in lysozyme. J Biochem. 1995 Nov;118(5):946–952. doi: 10.1093/jb/118.5.946. [DOI] [PubMed] [Google Scholar]
  2. Aime S., Fasano M., Paoletti S., Cutruzzolà F., Desideri A., Bolognesi M., Rizzi M., Ascenzi P. Structural determinants of fluoride and formate binding to hemoglobin and myoglobin: crystallographic and 1H-NMR relaxometric study. Biophys J. 1996 Jan;70(1):482–488. doi: 10.1016/S0006-3495(96)79593-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amiconi G., Antonini E., Brunori M., Wyman J., Zolla L. Interaction of hemoglobin with salts. Effects on the functional properties of human hemoglobin. J Mol Biol. 1981 Oct 15;152(1):111–129. doi: 10.1016/0022-2836(81)90097-8. [DOI] [PubMed] [Google Scholar]
  4. Antosiewicz J., McCammon J. A., Gilson M. K. Prediction of pH-dependent properties of proteins. J Mol Biol. 1994 May 6;238(3):415–436. doi: 10.1006/jmbi.1994.1301. [DOI] [PubMed] [Google Scholar]
  5. Antosiewicz J., McCammon J. A., Gilson M. K. The determinants of pKas in proteins. Biochemistry. 1996 Jun 18;35(24):7819–7833. doi: 10.1021/bi9601565. [DOI] [PubMed] [Google Scholar]
  6. Barrick D., Hughson F. M., Baldwin R. L. Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin. J Mol Biol. 1994 Apr 15;237(5):588–601. doi: 10.1006/jmbi.1994.1257. [DOI] [PubMed] [Google Scholar]
  7. Bashford D., Case D. A., Dalvit C., Tennant L., Wright P. E. Electrostatic calculations of side-chain pK(a) values in myoglobin and comparison with NMR data for histidines. Biochemistry. 1993 Aug 10;32(31):8045–8056. doi: 10.1021/bi00082a027. [DOI] [PubMed] [Google Scholar]
  8. Bhattacharya S., Lecomte J. T. Temperature dependence of histidine ionization constants in myoglobin. Biophys J. 1997 Dec;73(6):3241–3256. doi: 10.1016/S0006-3495(97)78349-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bhattacharya S., Sukits S. F., MacLaughlin K. L., Lecomte J. T. The tautomeric state of histidines in myoglobin. Biophys J. 1997 Dec;73(6):3230–3240. doi: 10.1016/S0006-3495(97)78348-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brunori M., Amiconi G., Antonin E., Wyman J., Zito R., Fanelli A. R. The transition between 'acid' and 'alkaline' ferric heme proteins. Biochim Biophys Acta. 1968 Feb 19;154(2):315–322. doi: 10.1016/0005-2795(68)90045-7. [DOI] [PubMed] [Google Scholar]
  11. Cocco M. J., Kao Y. H., Phillips A. T., Lecomte J. T. Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy. Biochemistry. 1992 Jul 21;31(28):6481–6491. doi: 10.1021/bi00143a018. [DOI] [PubMed] [Google Scholar]
  12. Collins K. D. Charge density-dependent strength of hydration and biological structure. Biophys J. 1997 Jan;72(1):65–76. doi: 10.1016/S0006-3495(97)78647-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dang Q. D., Di Cera E. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10653–10656. doi: 10.1073/pnas.93.20.10653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dao-pin S., Söderlind E., Baase W. A., Wozniak J. A., Sauer U., Matthews B. W. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J Mol Biol. 1991 Oct 5;221(3):873–887. doi: 10.1016/0022-2836(91)80181-s. [DOI] [PubMed] [Google Scholar]
  15. Elcock A. H., McCammon J. A. Electrostatic contributions to the stability of halophilic proteins. J Mol Biol. 1998 Jul 24;280(4):731–748. doi: 10.1006/jmbi.1998.1904. [DOI] [PubMed] [Google Scholar]
  16. Flanagan M. A., Garcia-Moreno B., Friend S. H., Feldmann R. J., Scouloudi H., Gurd F. R. Contributions of individual amino acid residues to the structural stability of cetacean myoglobins. Biochemistry. 1983 Dec 6;22(25):6027–6037. doi: 10.1021/bi00294a051. [DOI] [PubMed] [Google Scholar]
  17. Forsyth W. R., Gilson M. K., Antosiewicz J., Jaren O. R., Robertson A. D. Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain. Biochemistry. 1998 Jun 16;37(24):8643–8652. doi: 10.1021/bi980187v. [DOI] [PubMed] [Google Scholar]
  18. Fox J. M., Zhao X., Speir J. A., Young M. J. Analysis of a salt stable mutant of cowpea chlorotic mottle virus. Virology. 1996 Aug 1;222(1):115–122. doi: 10.1006/viro.1996.0402. [DOI] [PubMed] [Google Scholar]
  19. Garcia-Moreno B., Chen L. X., March K. L., Gurd R. S., Gurd F. R. Electrostatic interactions in sperm whale myoglobin. Site specificity, roles in structural elements, and external electrostatic potential distributions. J Biol Chem. 1985 Nov 15;260(26):14070–14082. [PubMed] [Google Scholar]
  20. García-Moreno B., Dwyer J. J., Gittis A. G., Lattman E. E., Spencer D. S., Stites W. E. Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys Chem. 1997 Feb 28;64(1-3):211–224. doi: 10.1016/s0301-4622(96)02238-7. [DOI] [PubMed] [Google Scholar]
  21. García-Moreno B. Estimating binding constants for site-specific interactions between monovalent ions and proteins. Methods Enzymol. 1994;240:645–667. doi: 10.1016/s0076-6879(94)40067-9. [DOI] [PubMed] [Google Scholar]
  22. Gilson M. K. Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins. Proteins. 1993 Mar;15(3):266–282. doi: 10.1002/prot.340150305. [DOI] [PubMed] [Google Scholar]
  23. Goto Y., Calciano L. J., Fink A. L. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(2):573–577. doi: 10.1073/pnas.87.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Havranek J. J., Harbury P. B. Tanford-Kirkwood electrostatics for protein modeling. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11145–11150. doi: 10.1073/pnas.96.20.11145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klapper I., Hagstrom R., Fine R., Sharp K., Honig B. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and amino-acid modification. Proteins. 1986 Sep;1(1):47–59. doi: 10.1002/prot.340010109. [DOI] [PubMed] [Google Scholar]
  27. Kozlov A. G., Lohman T. M. Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy. J Mol Biol. 1998 May 22;278(5):999–1014. doi: 10.1006/jmbi.1998.1738. [DOI] [PubMed] [Google Scholar]
  28. Krishnamoorthi R., La Mar G. N. Identification of the titrating group in the heme cavity of myoglobin. Evidence for the heme-protein pi-pi interaction. Eur J Biochem. 1984 Jan 2;138(1):135–140. doi: 10.1111/j.1432-1033.1984.tb07892.x. [DOI] [PubMed] [Google Scholar]
  29. Kuhlman B., Luisi D. L., Young P., Raleigh D. P. pKa values and the pH dependent stability of the N-terminal domain of L9 as probes of electrostatic interactions in the denatured state. Differentiation between local and nonlocal interactions. Biochemistry. 1999 Apr 13;38(15):4896–4903. doi: 10.1021/bi982931h. [DOI] [PubMed] [Google Scholar]
  30. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  31. Lyu P. C., Gans P. J., Kallenbach N. R. Energetic contribution of solvent-exposed ion pairs to alpha-helix structure. J Mol Biol. 1992 Jan 5;223(1):343–350. doi: 10.1016/0022-2836(92)90735-3. [DOI] [PubMed] [Google Scholar]
  32. Makhatadze G. I., Lopez M. M., Richardson J. M., 3rd, Thomas S. T. Anion binding to the ubiquitin molecule. Protein Sci. 1998 Mar;7(3):689–697. doi: 10.1002/pro.5560070318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Matthew J. B., Gurd F. R., Garcia-Moreno B., Flanagan M. A., March K. L., Shire S. J. pH-dependent processes in proteins. CRC Crit Rev Biochem. 1985;18(2):91–197. doi: 10.3109/10409238509085133. [DOI] [PubMed] [Google Scholar]
  34. Namba K., Stubbs G. Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science. 1986 Mar 21;231(4744):1401–1406. doi: 10.1126/science.3952490. [DOI] [PubMed] [Google Scholar]
  35. Nozaki Y., Tanford C. Acid-base titrations in concentrated guanidine hydrochloride. Dissociation constants of the guamidinium ion and of some amino acids. J Am Chem Soc. 1967 Feb 15;89(4):736–742. doi: 10.1021/ja00980a002. [DOI] [PubMed] [Google Scholar]
  36. O'Brien R., DeDecker B., Fleming K. G., Sigler P. B., Ladbury J. E. The effects of salt on the TATA binding protein-DNA interaction from a hyperthermophilic archaeon. J Mol Biol. 1998 May 29;279(1):117–125. doi: 10.1006/jmbi.1998.1743. [DOI] [PubMed] [Google Scholar]
  37. Pace C. N., Grimsley G. R. Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry. 1988 May 3;27(9):3242–3246. doi: 10.1021/bi00409a018. [DOI] [PubMed] [Google Scholar]
  38. Pieper U., Kapadia G., Mevarech M., Herzberg O. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure. 1998 Jan 15;6(1):75–88. doi: 10.1016/s0969-2126(98)00009-4. [DOI] [PubMed] [Google Scholar]
  39. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  40. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  41. Schaller W., Robertson A. D. pH, ionic strength, and temperature dependences of ionization equilibria for the carboxyl groups in turkey ovomucoid third domain. Biochemistry. 1995 Apr 11;34(14):4714–4723. doi: 10.1021/bi00014a028. [DOI] [PubMed] [Google Scholar]
  42. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  43. Scouloudi H., Baker E. N. X-ray crystallographic studies of seal myoglobin. The molecule at 2.5 A resolution. J Mol Biol. 1978 Dec 25;126(4):637–660. doi: 10.1016/0022-2836(78)90013-x. [DOI] [PubMed] [Google Scholar]
  44. Smith J. S., Scholtz J. M. Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds. Biochemistry. 1998 Jan 6;37(1):33–40. doi: 10.1021/bi972026h. [DOI] [PubMed] [Google Scholar]
  45. Takahashi T., Nakamura H., Wada A. Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values. Biopolymers. 1992 Aug;32(8):897–909. doi: 10.1002/bip.360320802. [DOI] [PubMed] [Google Scholar]
  46. Warshel A., Russell S. T., Churg A. K. Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4785–4789. doi: 10.1073/pnas.81.15.4785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  48. Yang A. S., Honig B. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin. J Mol Biol. 1994 Apr 15;237(5):602–614. doi: 10.1006/jmbi.1994.1258. [DOI] [PubMed] [Google Scholar]
  49. Zhu Z. Y., Karlin S. Clusters of charged residues in protein three-dimensional structures. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8350–8355. doi: 10.1073/pnas.93.16.8350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES