Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1655–1669. doi: 10.1016/S0006-3495(00)76415-0

Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.

S E Sund 1, D Axelrod 1
PMCID: PMC1301057  PMID: 10969025

Abstract

Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics.

Full Text

The Full Text of this article is available as a PDF (365.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod D., Ravdin P., Koppel D. E., Schlessinger J., Webb W. W., Elson E. L., Podleski T. R. Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4594–4598. doi: 10.1073/pnas.73.12.4594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bloch R. J., Velez M., Krikorian J. G., Axelrod D. Microfilaments and actin-associated proteins at sites of membrane-substrate attachment within acetylcholine receptor clusters. Exp Cell Res. 1989 Jun;182(2):583–596. doi: 10.1016/0014-4827(89)90261-9. [DOI] [PubMed] [Google Scholar]
  4. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De La Cruz E. M., Pollard T. D. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. Biochemistry. 1996 Nov 12;35(45):14054–14061. doi: 10.1021/bi961047t. [DOI] [PubMed] [Google Scholar]
  6. Fulbright R. M., Axelrod D., Dunham W. R., Marcelo C. L. Fatty acid alteration and the lateral diffusion of lipids in the plasma membrane of keratinocytes. Exp Cell Res. 1997 May 25;233(1):128–134. doi: 10.1006/excr.1997.3553. [DOI] [PubMed] [Google Scholar]
  7. Gesty-Palmer D., Thompson N. L. Binding of the soluble, truncated form of an Fc receptor (mouse Fc gamma RII) to membrane-bound IgG as measured by total internal reflection fluorescence microscopy. J Mol Recognit. 1997 Mar-Apr;10(2):63–72. doi: 10.1002/(SICI)1099-1352(199703/04)10:2<63::AID-JMR342>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  8. Gicquaud C. Actin conformation is drastically altered by direct interaction with membrane lipids: a differential scanning calorimetry study. Biochemistry. 1993 Nov 9;32(44):11873–11877. doi: 10.1021/bi00095a016. [DOI] [PubMed] [Google Scholar]
  9. Gicquaud C. Does actin bind to membrane lipids under conditions compatible with those existing in vivo? Biochem Biophys Res Commun. 1995 Mar 28;208(3):1154–1158. doi: 10.1006/bbrc.1995.1454. [DOI] [PubMed] [Google Scholar]
  10. Hsieh H. V., Thompson N. L. Dissociation kinetics between a mouse Fc receptor (Fc gamma RII) and IgG: measurement by total internal reflection with fluorescence photobleaching recovery. Biochemistry. 1995 Sep 26;34(38):12481–12488. doi: 10.1021/bi00038a047. [DOI] [PubMed] [Google Scholar]
  11. MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
  12. Mc Kiernan A. E., MacDonald R. I., MacDonald R. C., Axelrod D. Cytoskeletal protein binding kinetics at planar phospholipid membranes. Biophys J. 1997 Oct;73(4):1987–1998. doi: 10.1016/S0006-3495(97)78229-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pardee J. D., Spudich J. A. Purification of muscle actin. Methods Cell Biol. 1982;24:271–289. doi: 10.1016/s0091-679x(08)60661-5. [DOI] [PubMed] [Google Scholar]
  14. Patterson B., Spudich J. A. A novel positive selection for identifying cold-sensitive myosin II mutants in Dictyostelium. Genetics. 1995 Jun;140(2):505–515. doi: 10.1093/genetics/140.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sheets E. D., Chen L., Thompson N. L. Decreased IgG-Fc gamma RII dissociation kinetics in the presence of a protein antigen. Mol Immunol. 1997 May;34(7):519–526. doi: 10.1016/s0161-5890(97)00057-6. [DOI] [PubMed] [Google Scholar]
  16. Simon J. R., Gough A., Urbanik E., Wang F., Lanni F., Ware B. R., Taylor D. L. Analysis of rhodamine and fluorescein-labeled F-actin diffusion in vitro by fluorescence photobleaching recovery. Biophys J. 1988 Nov;54(5):801–815. doi: 10.1016/S0006-3495(88)83018-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tardy Y., McGrath J. L., Hartwig J. H., Dewey C. F. Interpreting photoactivated fluorescence microscopy measurements of steady-state actin dynamics. Biophys J. 1995 Nov;69(5):1674–1682. doi: 10.1016/S0006-3495(95)80085-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Theriot J. A., Mitchison T. J. Actin microfilament dynamics in locomoting cells. Nature. 1991 Jul 11;352(6331):126–131. doi: 10.1038/352126a0. [DOI] [PubMed] [Google Scholar]
  19. Theriot J. A., Mitchison T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol. 1992 Oct;119(2):367–377. doi: 10.1083/jcb.119.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson N. L., Burghardt T. P., Axelrod D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys J. 1981 Mar;33(3):435–454. doi: 10.1016/S0006-3495(81)84905-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang Y. L. Mobility of filamentous actin in living cytoplasm. J Cell Biol. 1987 Dec;105(6 Pt 1):2811–2816. doi: 10.1083/jcb.105.6.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wehland J., Osborn M., Weber K. Phalloidin associates with microfilaments after microinjection into tissue culture cells. Eur J Cell Biol. 1980 Jun;21(2):188–194. [PubMed] [Google Scholar]
  23. Wehland J., Osborn M., Weber K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5613–5617. doi: 10.1073/pnas.74.12.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES