Abstract
Molecular modeling and information processing techniques were combined to refine the structure of translocase (EF-G) in the ribosome-bound form against data from cryoelectron microscopy (cryo-EM). We devised a novel multi-scale refinement method based on vector quantization and force-field methods that gives excellent agreement between the flexibly docked structure of GDP. EF-G and the cryo-EM density map at 17 A resolution. The refinement reveals a dramatic "induced fit" conformational change on the 70S ribosome, mainly involving EF-G's domains III, IV, and V. The rearrangement of EF-G's structurally preserved regions, mediated and guided by flexible linkers, defines the site of interaction with the GTPase-associated center of the ribosome.
Full Text
The Full Text of this article is available as a PDF (868.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AEvarsson A., Brazhnikov E., Garber M., Zheltonosova J., Chirgadze Y., al-Karadaghi S., Svensson L. A., Liljas A. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 1994 Aug 15;13(16):3669–3677. doi: 10.1002/j.1460-2075.1994.tb06676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agrawal R. K., Heagle A. B., Penczek P., Grassucci R. A., Frank J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Biol. 1999 Jul;6(7):643–647. doi: 10.1038/10695. [DOI] [PubMed] [Google Scholar]
- Agrawal R. K., Penczek P., Grassucci R. A., Frank J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6134–6138. doi: 10.1073/pnas.95.11.6134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alberts B. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell. 1998 Feb 6;92(3):291–294. doi: 10.1016/s0092-8674(00)80922-8. [DOI] [PubMed] [Google Scholar]
- Avarsson A. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation. J Mol Evol. 1995 Dec;41(6):1096–1104. [PubMed] [Google Scholar]
- Baca O. G., Rohrbach M. S., Bodley J. W. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome. Biochemistry. 1976 Oct 19;15(21):4570–4574. doi: 10.1021/bi00666a004. [DOI] [PubMed] [Google Scholar]
- Ban N., Nissen P., Hansen J., Capel M., Moore P. B., Steitz T. A. Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature. 1999 Aug 26;400(6747):841–847. doi: 10.1038/23641. [DOI] [PubMed] [Google Scholar]
- Berchtold H., Reshetnikova L., Reiser C. O., Schirmer N. K., Sprinzl M., Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 1993 Sep 9;365(6442):126–132. doi: 10.1038/365126a0. [DOI] [PubMed] [Google Scholar]
- Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
- Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: conserved structure and molecular mechanism. Nature. 1991 Jan 10;349(6305):117–127. doi: 10.1038/349117a0. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
- Clemons W. M., Jr, May J. L., Wimberly B. T., McCutcheon J. P., Capel M. S., Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature. 1999 Aug 26;400(6747):833–840. doi: 10.1038/23631. [DOI] [PubMed] [Google Scholar]
- Conn G. L., Draper D. E., Lattman E. E., Gittis A. G. Crystal structure of a conserved ribosomal protein-RNA complex. Science. 1999 May 14;284(5417):1171–1174. doi: 10.1126/science.284.5417.1171. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Munishkin A., Chan Y. L., Ren Z., Wool I. G., Steitz T. A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13436–13441. doi: 10.1073/pnas.95.23.13436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Czworkowski J., Moore P. B. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry. 1997 Aug 19;36(33):10327–10334. doi: 10.1021/bi970610k. [DOI] [PubMed] [Google Scholar]
- Czworkowski J., Wang J., Steitz T. A., Moore P. B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 1994 Aug 15;13(16):3661–3668. doi: 10.1002/j.1460-2075.1994.tb06675.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeRosier D. J., Harrison S. C. Macromolecular assemblages. Sizing things up. Curr Opin Struct Biol. 1997 Apr;7(2):237–238. doi: 10.1016/s0959-440x(97)80031-0. [DOI] [PubMed] [Google Scholar]
- Gabashvili I. S., Agrawal R. K., Spahn C. M., Grassucci R. A., Svergun D. I., Frank J., Penczek P. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell. 2000 Mar 3;100(5):537–549. doi: 10.1016/s0092-8674(00)80690-x. [DOI] [PubMed] [Google Scholar]
- Gerstein M., Krebs W. A database of macromolecular motions. Nucleic Acids Res. 1998 Sep 15;26(18):4280–4290. doi: 10.1093/nar/26.18.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerstein M., Lesk A. M., Chothia C. Structural mechanisms for domain movements in proteins. Biochemistry. 1994 Jun 7;33(22):6739–6749. doi: 10.1021/bi00188a001. [DOI] [PubMed] [Google Scholar]
- Hayward S. Structural principles governing domain motions in proteins. Proteins. 1999 Sep 1;36(4):425–435. [PubMed] [Google Scholar]
- Holley L. H., Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A. 1989 Jan;86(1):152–156. doi: 10.1073/pnas.86.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8, 27-8. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
- Johanson U., Aevarsson A., Liljas A., Hughes D. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J Mol Biol. 1996 May 10;258(3):420–432. doi: 10.1006/jmbi.1996.0259. [DOI] [PubMed] [Google Scholar]
- Kaziro Y. The role of guanosine 5'-triphosphate in polypeptide chain elongation. Biochim Biophys Acta. 1978 Sep 21;505(1):95–127. doi: 10.1016/0304-4173(78)90009-5. [DOI] [PubMed] [Google Scholar]
- Lawson C. L., Zhang R. G., Schevitz R. W., Otwinowski Z., Joachimiak A., Sigler P. B. Flexibility of the DNA-binding domains of trp repressor. Proteins. 1988;3(1):18–31. doi: 10.1002/prot.340030103. [DOI] [PubMed] [Google Scholar]
- Lesk A. M., Chothia C. Mechanisms of domain closure in proteins. J Mol Biol. 1984 Mar 25;174(1):175–191. doi: 10.1016/0022-2836(84)90371-1. [DOI] [PubMed] [Google Scholar]
- Malhotra A., Penczek P., Agrawal R. K., Gabashvili I. S., Grassucci R. A., Jünemann R., Burkhardt N., Nierhaus K. H., Frank J. Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. J Mol Biol. 1998 Jul 3;280(1):103–116. doi: 10.1006/jmbi.1998.1859. [DOI] [PubMed] [Google Scholar]
- McPhalen C. A., Vincent M. G., Picot D., Jansonius J. N., Lesk A. M., Chothia C. Domain closure in mitochondrial aspartate aminotransferase. J Mol Biol. 1992 Sep 5;227(1):197–213. doi: 10.1016/0022-2836(92)90691-c. [DOI] [PubMed] [Google Scholar]
- Skarzyński T., Wonacott A. J. Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol. 1988 Oct 20;203(4):1097–1118. doi: 10.1016/0022-2836(88)90130-1. [DOI] [PubMed] [Google Scholar]
- Stowell M. H., Miyazawa A., Unwin N. Macromolecular structure determination by electron microscopy: new advances and recent results. Curr Opin Struct Biol. 1998 Oct;8(5):595–600. doi: 10.1016/s0959-440x(98)80150-4. [DOI] [PubMed] [Google Scholar]
- Tocilj A., Schlünzen F., Janell D., Glühmann M., Hansen H. A., Harms J., Bashan A., Bartels H., Agmon I., Franceschi F. The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14252–14257. doi: 10.1073/pnas.96.25.14252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. J Cell Biol. 1996 Oct;135(2):291–302. doi: 10.1083/jcb.135.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willie G. R., Richman N., Godtfredsen W. P., Bodley J. W. Some characteristics of and structural requirements for the interaction of 24,25-dihydrofusidic acid with ribosome - elongation factor g Complexes. Biochemistry. 1975 Apr 22;14(8):1713–1718. doi: 10.1021/bi00679a025. [DOI] [PubMed] [Google Scholar]
- Wilson K. S., Noller H. F. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell. 1998 Jan 9;92(1):131–139. doi: 10.1016/s0092-8674(00)80905-8. [DOI] [PubMed] [Google Scholar]
- Wimberly B. T., Guymon R., McCutcheon J. P., White S. W., Ramakrishnan V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell. 1999 May 14;97(4):491–502. doi: 10.1016/s0092-8674(00)80759-x. [DOI] [PubMed] [Google Scholar]
- Wriggers W., Milligan R. A., McCammon J. A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J Struct Biol. 1999 Apr-May;125(2-3):185–195. doi: 10.1006/jsbi.1998.4080. [DOI] [PubMed] [Google Scholar]
- Wriggers W., Milligan R. A., Schulten K., McCammon J. A. Self-organizing neural networks bridge the biomolecular resolution gap. J Mol Biol. 1998 Dec 18;284(5):1247–1254. doi: 10.1006/jmbi.1998.2232. [DOI] [PubMed] [Google Scholar]
- Wriggers W., Schulten K. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing. Biophys J. 1998 Aug;75(2):646–661. doi: 10.1016/S0006-3495(98)77555-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wriggers W., Schulten K. Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins. 1997 Sep;29(1):1–14. [PubMed] [Google Scholar]