Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1679–1685. doi: 10.1016/S0006-3495(00)76417-4

Molecular belt models for the apolipoprotein A-I Paris and Milano mutations.

A E Klon 1, M K Jones 1, J P Segrest 1, S C Harvey 1
PMCID: PMC1301059  PMID: 10969027

Abstract

Models for the binding of the 200-residue carboxy-terminal domain of two mutants of apolipoprotein A-I (apo A-I), apo A-I(R173C)(Milano) and apo A-I(R151C)(Paris), to lipid in discoidal high-density lipoprotein (HDL) particles are presented. In both models, two monomers of the mutant apo A-I molecule bind to lipid in an antiparallel manner, with the long axes of their helical repeats running perpendicular to the normal of the lipid bilayer to form a single disulfide-linked homodimer. The overall structures of the models of these two mutants are very similar, differing only in helix-helix registration. Thus these models are consistent with experimental observations that reconstituted HDL particles containing apo A-I(Milano) and apo A-I(Paris) are very similar in diameter to reconstituted HDL particles containing wild-type apo A-I, and they support the belief that apo A-I binds to lipid in discoidal HDL particles via the belt conformation.

Full Text

The Full Text of this article is available as a PDF (185.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D., Davis M. A., Leslie R. B. The structure of a high density lipoprotein (HDL3) from porcine plasma. Proc R Soc Lond B Biol Sci. 1974 Jun 11;186(1083):165–180. doi: 10.1098/rspb.1974.0044. [DOI] [PubMed] [Google Scholar]
  2. Borhani D. W., Rogers D. P., Engler J. A., Brouillette C. G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12291–12296. doi: 10.1073/pnas.94.23.12291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brasseur R., De Meutter J., Vanloo B., Goormaghtigh E., Ruysschaert J. M., Rosseneu M. Mode of assembly of amphipathic helical segments in model high-density lipoproteins. Biochim Biophys Acta. 1990 Apr 17;1043(3):245–252. doi: 10.1016/0005-2760(90)90023-q. [DOI] [PubMed] [Google Scholar]
  4. Brasseur R., Lins L., Vanloo B., Ruysschaert J. M., Rosseneu M. Molecular modeling of the amphipathic helices of the plasma apolipoproteins. Proteins. 1992 Jul;13(3):246–257. doi: 10.1002/prot.340130307. [DOI] [PubMed] [Google Scholar]
  5. Brouillette C. G., Anantharamaiah G. M. Structural models of human apolipoprotein A-I. Biochim Biophys Acta. 1995 May 17;1256(2):103–129. doi: 10.1016/0005-2760(95)00018-8. [DOI] [PubMed] [Google Scholar]
  6. Bruckert E., von Eckardstein A., Funke H., Beucler I., Wiebusch H., Turpin G., Assmann G. The replacement of arginine by cysteine at residue 151 in apolipoprotein A-I produces a phenotype similar to that of apolipoprotein A-IMilano. Atherosclerosis. 1997 Jan 3;128(1):121–128. doi: 10.1016/s0021-9150(96)05982-5. [DOI] [PubMed] [Google Scholar]
  7. Calabresi L., Franceschini G., Burkybile A., Jonas A. Activation of lecithin cholesterol acyltransferase by a disulfide-linked apolipoprotein A-I dimer. Biochem Biophys Res Commun. 1997 Mar 17;232(2):345–349. doi: 10.1006/bbrc.1997.6286. [DOI] [PubMed] [Google Scholar]
  8. Calabresi L., Vecchio G., Frigerio F., Vavassori L., Sirtori C. R., Franceschini G. Reconstituted high-density lipoproteins with a disulfide-linked apolipoprotein A-I dimer: evidence for restricted particle size heterogeneity. Biochemistry. 1997 Oct 14;36(41):12428–12433. doi: 10.1021/bi970505a. [DOI] [PubMed] [Google Scholar]
  9. Castelli W. P., Garrison R. J., Wilson P. W., Abbott R. D., Kalousdian S., Kannel W. B. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. JAMA. 1986 Nov 28;256(20):2835–2838. [PubMed] [Google Scholar]
  10. Daum U., Langer C., Duverger N., Emmanuel F., Benoit P., Denèfle P., Chirazi A., Cullen P., Pritchard P. H., Bruckert E. Apolipoprotein A-I (R151C)Paris is defective in activation of lecithin: cholesterol acyltransferase but not in initial lipid binding, formation of reconstituted lipoproteins, or promotion of cholesterol efflux. J Mol Med (Berl) 1999 Aug;77(8):614–622. doi: 10.1007/s001099900034. [DOI] [PubMed] [Google Scholar]
  11. Fielding C. J., Fielding P. E. Molecular physiology of reverse cholesterol transport. J Lipid Res. 1995 Feb;36(2):211–228. [PubMed] [Google Scholar]
  12. Franceschini G., Calabresi L., Chiesa G., Parolini C., Sirtori C. R., Canavesi M., Bernini F. Increased cholesterol efflux potential of sera from ApoA-IMilano carriers and transgenic mice. Arterioscler Thromb Vasc Biol. 1999 May;19(5):1257–1262. doi: 10.1161/01.atv.19.5.1257. [DOI] [PubMed] [Google Scholar]
  13. Franceschini G., Sirtori C. R., Capurso A., 2nd, Weisgraber K. H., Mahley R. W. A-IMilano apoprotein. Decreased high density lipoprotein cholesterol levels with significant lipoprotein modifications and without clinical atherosclerosis in an Italian family. J Clin Invest. 1980 Nov;66(5):892–900. doi: 10.1172/JCI109956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jonas A., Wald J. H., Toohill K. L., Krul E. S., Kézdy K. E. Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. J Biol Chem. 1990 Dec 25;265(36):22123–22129. [PubMed] [Google Scholar]
  15. Jones M. K., Anantharamaiah G. M., Segrest J. P. Computer programs to identify and classify amphipathic alpha helical domains. J Lipid Res. 1992 Feb;33(2):287–296. [PubMed] [Google Scholar]
  16. Koppaka V., Silvestro L., Engler J. A., Brouillette C. G., Axelsen P. H. The structure of human lipoprotein A-I. Evidence for the "belt" model. J Biol Chem. 1999 May 21;274(21):14541–14544. doi: 10.1074/jbc.274.21.14541. [DOI] [PubMed] [Google Scholar]
  17. Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
  18. Miller N. E., Thelle D. S., Forde O. H., Mjos O. D. The Tromsø heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet. 1977 May 7;1(8019):965–968. doi: 10.1016/s0140-6736(77)92274-7. [DOI] [PubMed] [Google Scholar]
  19. Mishra V. K., Palgunachari M. N. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry. 1996 Aug 27;35(34):11210–11220. doi: 10.1021/bi960760f. [DOI] [PubMed] [Google Scholar]
  20. Nolte R. T., Atkinson D. Conformational analysis of apolipoprotein A-I and E-3 based on primary sequence and circular dichroism. Biophys J. 1992 Nov;63(5):1221–1239. doi: 10.1016/S0006-3495(92)81698-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palgunachari M. N., Mishra V. K., Lund-Katz S., Phillips M. C., Adeyeye S. O., Alluri S., Anantharamaiah G. M., Segrest J. P. Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler Thromb Vasc Biol. 1996 Feb;16(2):328–338. doi: 10.1161/01.atv.16.2.328. [DOI] [PubMed] [Google Scholar]
  22. Phillips J. C., Wriggers W., Li Z., Jonas A., Schulten K. Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J. 1997 Nov;73(5):2337–2346. doi: 10.1016/S0006-3495(97)78264-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rogers D. P., Brouillette C. G., Engler J. A., Tendian S. W., Roberts L., Mishra V. K., Anantharamaiah G. M., Lund-Katz S., Phillips M. C., Ray M. J. Truncation of the amino terminus of human apolipoprotein A-I substantially alters only the lipid-free conformation. Biochemistry. 1997 Jan 14;36(2):288–300. doi: 10.1021/bi961876e. [DOI] [PubMed] [Google Scholar]
  24. Rogers D. P., Roberts L. M., Lebowitz J., Datta G., Anantharamaiah G. M., Engler J. A., Brouillette C. G. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions. Biochemistry. 1998 Aug 25;37(34):11714–11725. doi: 10.1021/bi973112k. [DOI] [PubMed] [Google Scholar]
  25. Rothblat G. H., Mahlberg F. H., Johnson W. J., Phillips M. C. Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. J Lipid Res. 1992 Aug;33(8):1091–1097. [PubMed] [Google Scholar]
  26. Segrest J. P. Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem Phys Lipids. 1977 Jan;18(1):7–22. doi: 10.1016/0009-3084(77)90023-8. [DOI] [PubMed] [Google Scholar]
  27. Segrest J. P., Jackson R. L., Morrisett J. D., Gotto A. M., Jr A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett. 1974 Jan 15;38(3):247–258. doi: 10.1016/0014-5793(74)80064-5. [DOI] [PubMed] [Google Scholar]
  28. Segrest J. P., Jones M. K., De Loof H., Brouillette C. G., Venkatachalapathi Y. V., Anantharamaiah G. M. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res. 1992 Feb;33(2):141–166. [PubMed] [Google Scholar]
  29. Segrest J. P., Jones M. K., Klon A. E., Sheldahl C. J., Hellinger M., De Loof H., Harvey S. C. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J Biol Chem. 1999 Nov 5;274(45):31755–31758. doi: 10.1074/jbc.274.45.31755. [DOI] [PubMed] [Google Scholar]
  30. Sheldahl C., Harvey S. C. Molecular dynamics on a model for nascent high-density lipoprotein: role of salt bridges. Biophys J. 1999 Mar;76(3):1190–1198. doi: 10.1016/S0006-3495(99)77283-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sirtori C. R., Calabresi L., Franceschini G. Recombinant apolipoproteins for the treatment of vascular diseases. Atherosclerosis. 1999 Jan;142(1):29–40. doi: 10.1016/s0021-9150(98)00247-0. [DOI] [PubMed] [Google Scholar]
  32. Sparks D. L., Phillips M. C., Lund-Katz S. The conformation of apolipoprotein A-I in discoidal and spherical recombinant high density lipoprotein particles. 13C NMR studies of lysine ionization behavior. J Biol Chem. 1992 Dec 25;267(36):25830–25838. [PubMed] [Google Scholar]
  33. Tall A. R., Small D. M., Deckelbaum R. J., Shipley G. G. Structure and thermodynamic properties of high density lipoprotein recombinants. J Biol Chem. 1977 Jul 10;252(13):4701–4711. [PubMed] [Google Scholar]
  34. Weisgraber K. H., Rall S. C., Jr, Bersot T. P., Mahley R. W., Franceschini G., Sirtori C. R. Apolipoprotein A-IMilano. Detection of normal A-I in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. J Biol Chem. 1983 Feb 25;258(4):2508–2513. [PubMed] [Google Scholar]
  35. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys J. 1992 Feb;61(2):428–433. doi: 10.1016/S0006-3495(92)81848-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES