Abstract
The energy transfer rates between chlorophylls in the light harvesting complex CP29 of higher plants at room temperature were calculated ab initio according to the Förster mechanism (Förster T. 1948, Ann. Physik. 2:55-67). Recently, the transition moment orientation of CP29 chlorophylls was determined by differential linear dichroism and absorption spectroscopy of wild-type versus mutant proteins in which single chromophores were missing (Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., and Bassi R. 1999. Biochemistry. 38:12974-12983). In this way the Q(y) transition energy and chlorophyll a/b affinity of each binding site was obtained and their characteristics supported by reconstruction of steady-state linear dichroism and absorption spectra at room temperature. In this study, the spectral form of individual chlorophyll a and b ligands within the protein environment was experimentally determined, and their extinction coefficients were also used to evaluate the absolute overlap integral between donors and acceptors employing the Stepanov relation for both the emission spectrum and the Stokes shift. This information was used to calculate the time-dependent excitation redistribution among CP29 chlorophylls on solving numerically the Pauli master equation of the complex: transient absorption measurements in the (sub)picosecond time scale were simulated and compared to pump-and-probe experimental data in the Q(y) region on the native CP29 at room temperature upon selective excitation of chlorophylls b at 640 or 650 nm. The kinetic model indicates a bidirectional excitation transfer over all CP29 chlorophylls a species, which is particularly rapid between the pure sites A1-A2 and A4-A5. Chlorophylls b in mixed sites act mostly as energy donors for chlorophylls a, whereas site B5 shows high and bidirectional coupling independent of the pigment hosted.
Full Text
The Full Text of this article is available as a PDF (313.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassi R., Croce R., Cugini D., Sandonà D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10056–10061. doi: 10.1073/pnas.96.18.10056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breton J., Michel-Villaz M., Paillotin G. Orientation of pigments and structural proteins in the photosynthetic membrane of spinach chloroplasts: a linear dichroism study. Biochim Biophys Acta. 1973 Jul 26;314(1):42–56. doi: 10.1016/0005-2728(73)90062-5. [DOI] [PubMed] [Google Scholar]
- Connelly J. P., Müller M. G., Bassi R., Croce R., Holzwarth A. R. Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II. Biochemistry. 1997 Jan 14;36(2):281–287. doi: 10.1021/bi962467l. [DOI] [PubMed] [Google Scholar]
- Croce R., Breton J., Bassi R. Conformational changes induced by phosphorylation in the CP29 subunit of photosystem II. Biochemistry. 1996 Aug 27;35(34):11142–11148. doi: 10.1021/bi960652t. [DOI] [PubMed] [Google Scholar]
- Croce R., Remelli R., Varotto C., Breton J., Bassi R. The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett. 1999 Jul 30;456(1):1–6. doi: 10.1016/s0014-5793(99)00907-2. [DOI] [PubMed] [Google Scholar]
- Dainese P., Bassi R. Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins. J Biol Chem. 1991 May 5;266(13):8136–8142. [PubMed] [Google Scholar]
- Giuffra E., Cugini D., Croce R., Bassi R. Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem. 1996 May 15;238(1):112–120. doi: 10.1111/j.1432-1033.1996.0112q.x. [DOI] [PubMed] [Google Scholar]
- Giuffra E., Zucchelli G., Sandonà D., Croce R., Cugini D., Garlaschi F. M., Bassi R., Jennings R. C. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry. 1997 Oct 21;36(42):12984–12993. doi: 10.1021/bi9711339. [DOI] [PubMed] [Google Scholar]
- Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gradinaru C. C., Pascal A. A., van Mourik F., Robert B., Horton P., van Grondelle R., van Amerongen H. Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy. Biochemistry. 1998 Jan 27;37(4):1143–1149. doi: 10.1021/bi9722655. [DOI] [PubMed] [Google Scholar]
- Holzwarth A. R., Müller M. G. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1996 Sep 10;35(36):11820–11831. doi: 10.1021/bi9607012. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991 Mar 14;350(6314):130–134. doi: 10.1038/350130a0. [DOI] [PubMed] [Google Scholar]
- Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
- Sandonà D., Croce R., Pagano A., Crimi M., Bassi R. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):207–214. doi: 10.1016/s0005-2728(98)00068-1. [DOI] [PubMed] [Google Scholar]
- Simonetto R., Crimi M., Sandonà D., Croce R., Cinque G., Breton J., Bassi R. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29. Biochemistry. 1999 Oct 5;38(40):12974–12983. doi: 10.1021/bi991140s. [DOI] [PubMed] [Google Scholar]
- Van Gurp M., Van Ginkel G., Levine Y. K. Orientational properties of biological pigments in ordered systems studied with polarized light: photosynthetic pigment-protein complexes in membranes. J Theor Biol. 1988 Apr 7;131(3):333–349. doi: 10.1016/s0022-5193(88)80229-7. [DOI] [PubMed] [Google Scholar]
- Zucchelli G., Dainese P., Jennings R. C., Breton J., Garlaschi F. M., Bassi R. Gaussian decomposition of absorption and linear dichroism spectra of outer antenna complexes of photosystem II. Biochemistry. 1994 Aug 2;33(30):8982–8990. doi: 10.1021/bi00196a016. [DOI] [PubMed] [Google Scholar]
