Abstract
If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble.
Full Text
The Full Text of this article is available as a PDF (82.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker J. E., Brust-Mascher I., Ramachandran S., LaConte L. E., Thomas D. D. A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2944–2949. doi: 10.1073/pnas.95.6.2944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker J. E., LaConte L. E., Brust-Mascher I., Thomas D. D. Mechanochemical coupling in spin-labeled, active, isometric muscle. Biophys J. 1999 Nov;77(5):2657–2664. doi: 10.1016/S0006-3495(99)77100-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke R., Pate E. The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J. 1985 Nov;48(5):789–798. doi: 10.1016/S0006-3495(85)83837-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppin C. M., Pierce D. W., Hsu L., Vale R. D. The load dependence of kinesin's mechanical cycle. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539–8544. doi: 10.1073/pnas.94.16.8539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finer J. T., Simmons R. M., Spudich J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature. 1994 Mar 10;368(6467):113–119. doi: 10.1038/368113a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
- Harry J. D., Ward A. W., Heglund N. C., Morgan D. L., McMahon T. A. Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle. Biophys J. 1990 Feb;57(2):201–208. doi: 10.1016/S0006-3495(90)82523-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog Biophys Mol Biol. 1974;28:267–340. doi: 10.1016/0079-6107(74)90020-0. [DOI] [PubMed] [Google Scholar]
- Jülicher F, Prost J. Cooperative molecular motors. Phys Rev Lett. 1995 Sep 25;75(13):2618–2621. doi: 10.1103/PhysRevLett.75.2618. [DOI] [PubMed] [Google Scholar]
- Leibler S., Huse D. A. Porters versus rowers: a unified stochastic model of motor proteins. J Cell Biol. 1993 Jun;121(6):1357–1368. doi: 10.1083/jcb.121.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
- Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rice S., Lin A. W., Safer D., Hart C. L., Naber N., Carragher B. O., Cain S. M., Pechatnikova E., Wilson-Kubalek E. M., Whittaker M. A structural change in the kinesin motor protein that drives motility. Nature. 1999 Dec 16;402(6763):778–784. doi: 10.1038/45483. [DOI] [PubMed] [Google Scholar]
- Romberg L., Vale R. D. Chemomechanical cycle of kinesin differs from that of myosin. Nature. 1993 Jan 14;361(6408):168–170. doi: 10.1038/361168a0. [DOI] [PubMed] [Google Scholar]
- Svoboda K., Schmidt C. F., Schnapp B. J., Block S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature. 1993 Oct 21;365(6448):721–727. doi: 10.1038/365721a0. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
- Warshaw D. M., Hayes E., Gaffney D., Lauzon A. M., Wu J., Kennedy G., Trybus K., Lowey S., Berger C. Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8034–8039. doi: 10.1073/pnas.95.14.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
