Abstract
Both elastic modulus and fracture stress are known to increase with the amount of mineral deposited within collagen fibrils. Current mechanical models of mineralized fibrils, where mineral platelets are arranged in parallel arrays, reproduce the first effect but fail to predict an increase in fracture stress. Here, we propose a model with a staggered array of platelets that is in better agreement with results on molecular packing in collagen fibrils and that accounts for an increase of both elastic modulus and fracture stress with the amount of mineral in the fibril. Finally, we explore the dependence of the mechanical properties within the model, when the degree of mineralization and the thickness of the platelets as well as their distance varies.
Full Text
The Full Text of this article is available as a PDF (230.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arsenault A. L., Grynpas M. D. Crystals in calcified epiphyseal cartilage and cortical bone of the rat. Calcif Tissue Int. 1988 Oct;43(4):219–225. doi: 10.1007/BF02555138. [DOI] [PubMed] [Google Scholar]
- Carter D. R., Hayes W. C. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 1977 Oct;59(7):954–962. [PubMed] [Google Scholar]
- Currey J. D. Physical characteristics affecting the tensile failure properties of compact bone. J Biomech. 1990;23(8):837–844. doi: 10.1016/0021-9290(90)90030-7. [DOI] [PubMed] [Google Scholar]
- Currey J. D. The relationship between the stiffness and the mineral content of bone. J Biomech. 1969 Oct;2(4):477–480. doi: 10.1016/0021-9290(69)90023-2. [DOI] [PubMed] [Google Scholar]
- Fratzl P., Fratzl-Zelman N., Klaushofer K. Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. Biophys J. 1993 Jan;64(1):260–266. doi: 10.1016/S0006-3495(93)81362-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fratzl P., Fratzl-Zelman N., Klaushofer K., Vogl G., Koller K. Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int. 1991 Jun;48(6):407–413. doi: 10.1007/BF02556454. [DOI] [PubMed] [Google Scholar]
- Fratzl P., Groschner M., Vogl G., Plenk H., Jr, Eschberger J., Fratzl-Zelman N., Koller K., Klaushofer K. Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res. 1992 Mar;7(3):329–334. doi: 10.1002/jbmr.5650070313. [DOI] [PubMed] [Google Scholar]
- Fratzl P., Misof K., Zizak I., Rapp G., Amenitsch H., Bernstorff S. Fibrillar structure and mechanical properties of collagen. J Struct Biol. 1998;122(1-2):119–122. doi: 10.1006/jsbi.1998.3966. [DOI] [PubMed] [Google Scholar]
- Fratzl P., Schreiber S., Klaushofer K. Bone mineralization as studied by small-angle x-ray scattering. Connect Tissue Res. 1996;34(4):247–254. doi: 10.3109/03008209609005268. [DOI] [PubMed] [Google Scholar]
- Glimcher M. J. The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect. 1987;36:49–69. [PubMed] [Google Scholar]
- Huiskes R., Hollister S. J. From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng. 1993 Nov;115(4B):520–527. doi: 10.1115/1.2895534. [DOI] [PubMed] [Google Scholar]
- Hulmes D. J., Wess T. J., Prockop D. J., Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys J. 1995 May;68(5):1661–1670. doi: 10.1016/S0006-3495(95)80391-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabel J., van Rietbergen B., Odgaard A., Huiskes R. Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone. 1999 Oct;25(4):481–486. doi: 10.1016/s8756-3282(99)00190-8. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Hodgens K. J., Arena J., Song M. J., McEwen B. F. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech. 1996 Feb 1;33(2):192–202. doi: 10.1002/(SICI)1097-0029(19960201)33:2<192::AID-JEMT9>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Librizzi J. J., Dunn M. G., Silver F. H. A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon. J Bone Miner Res. 1995 Jun;10(6):859–867. doi: 10.1002/jbmr.5650100606. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Song M. J., Leith A., McEwen L., McEwen B. F. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993 Jan-Feb;110(1):39–54. doi: 10.1006/jsbi.1993.1003. [DOI] [PubMed] [Google Scholar]
- Landis W. J. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995 May;16(5):533–544. doi: 10.1016/8756-3282(95)00076-p. [DOI] [PubMed] [Google Scholar]
- Lees S. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res. 1987;16(4):281–303. doi: 10.3109/03008208709005616. [DOI] [PubMed] [Google Scholar]
- Misof K., Rapp G., Fratzl P. A new molecular model for collagen elasticity based on synchrotron X-ray scattering evidence. Biophys J. 1997 Mar;72(3):1376–1381. doi: 10.1016/S0006-3495(97)78783-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rho J. Y., Kuhn-Spearing L., Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998 Mar;20(2):92–102. doi: 10.1016/s1350-4533(98)00007-1. [DOI] [PubMed] [Google Scholar]
- Rinnerthaler S., Roschger P., Jakob H. F., Nader A., Klaushofer K., Fratzl P. Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int. 1999 May;64(5):422–429. doi: 10.1007/pl00005824. [DOI] [PubMed] [Google Scholar]
- Sasaki N., Ikawa T., Fukuda A. Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech. 1991;24(1):57–61. doi: 10.1016/0021-9290(91)90326-i. [DOI] [PubMed] [Google Scholar]
- Wagner H. D., Weiner S. On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech. 1992 Nov;25(11):1311–1320. doi: 10.1016/0021-9290(92)90286-a. [DOI] [PubMed] [Google Scholar]
- White S. W., Hulmes D. J., Miller A., Timmins P. A. Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature. 1977 Mar 31;266(5601):421–425. doi: 10.1038/266421a0. [DOI] [PubMed] [Google Scholar]