Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1800–1820. doi: 10.1016/S0006-3495(00)76431-9

Development and dissipation of Ca(2+) gradients in adrenal chromaffin cells.

F D Marengo 1, J R Monck 1
PMCID: PMC1301073  PMID: 11023887

Abstract

We used pulsed laser imaging to measure the development and dissipation of Ca(2+) gradients evoked by the activation of voltage-sensitive Ca(2+) channels in adrenal chromaffin cells. Ca(2+) gradients appeared rapidly (<5 ms) upon membrane depolarization and dissipated over several hundred milliseconds after membrane repolarization. Dissipation occurred with an initial fast phase, as the steep gradient near the membrane collapsed, and a slower phase as the remaining shallow gradient dispersed. Inhibition of active Ca(2+) uptake by the endoplasmic reticulum (thapsigargin) and mitochondria (carbonylcyanide p-trifluoro-methoxyphenylhydrazone/oligomycin) had no effect on the size of Ca(2+) changes or the rate of gradient dissipation, suggesting that passive endogenous Ca(2+) buffers are responsible for the slow Ca(2+) redistribution. We used a radial diffusion model incorporating Ca(2+) diffusion and binding to intracellular Ca(2+) buffers to simulate Ca(2+) gradients. We included a 3D optical sectioning model, simulating the effects of out-of-focus light, to allow comparison with the measured gradients. Introduction of a high-capacity immobile Ca(2+) buffer, with a buffer capacity on the order of 1000 and appropriate affinity and kinetics, approximated the size of the Ca(2+) increases and rate of dissipation of the measured gradients. Finally, simulations without exogenous buffer suggest that the Ca(2+) signal due to Ca(2+) channel activation is restricted by the endogenous buffer to a space less than 1 microm from the cell membrane.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afework M., Burnstock G. Calretinin immunoreactivity in adrenal glands of developing, adult and ageing Sprague-Dawley rats. Int J Dev Neurosci. 1995 Oct;13(6):515–521. doi: 10.1016/0736-5748(95)00048-l. [DOI] [PubMed] [Google Scholar]
  2. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  3. Augustine G. J., Neher E. Calcium requirements for secretion in bovine chromaffin cells. J Physiol. 1992 May;450:247–271. doi: 10.1113/jphysiol.1992.sp019126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baimbridge K. G., Miller J. J., Parkes C. O. Calcium-binding protein distribution in the rat brain. Brain Res. 1982 May 13;239(2):519–525. doi: 10.1016/0006-8993(82)90526-1. [DOI] [PubMed] [Google Scholar]
  5. Bredderman P. J., Wasserman R. H. Chemical composition, affinity for calcium, and some related properties of the vitamin D dependent calcium-binding protein. Biochemistry. 1974 Apr 9;13(8):1687–1694. doi: 10.1021/bi00705a021. [DOI] [PubMed] [Google Scholar]
  6. Bright G. R., Fisher G. W., Rogowska J., Taylor D. L. Fluorescence ratio imaging microscopy. Methods Cell Biol. 1989;30:157–192. doi: 10.1016/s0091-679x(08)60979-6. [DOI] [PubMed] [Google Scholar]
  7. Buffa R., Mare P., Salvadore M., Solcia E., Furness J. B., Lawson D. E. Calbindin 28 kDa in endocrine cells of known or putative calcium-regulating function. Thyro-parathyroid C cells, gastric ECL cells, intestinal secretin and enteroglucagon cells, pancreatic glucagon, insulin and PP cells, adrenal medullary NA cells and some pituitary (TSH?) cells. Histochemistry. 1989;91(2):107–113. doi: 10.1007/BF00492384. [DOI] [PubMed] [Google Scholar]
  8. Burgoyne R. D., Geisow M. J. The annexin family of calcium-binding proteins. Review article. Cell Calcium. 1989 Jan;10(1):1–10. doi: 10.1016/0143-4160(89)90038-9. [DOI] [PubMed] [Google Scholar]
  9. Burgoyne R. D., Morgan A., O'Sullivan A. J. A major role for protein kinase C in calcium-activated exocytosis in permeabilised adrenal chromaffin cells. FEBS Lett. 1988 Sep 26;238(1):151–155. doi: 10.1016/0014-5793(88)80246-1. [DOI] [PubMed] [Google Scholar]
  10. Chad J. E., Eckert R. Calcium domains associated with individual channels can account for anomalous voltage relations of CA-dependent responses. Biophys J. 1984 May;45(5):993–999. doi: 10.1016/S0006-3495(84)84244-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chard P. S., Bleakman D., Christakos S., Fullmer C. S., Miller R. J. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol. 1993 Dec;472:341–357. doi: 10.1113/jphysiol.1993.sp019950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiGregorio D. A., Peskoff A., Vergara J. L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci. 1999 Sep 15;19(18):7846–7859. doi: 10.1523/JNEUROSCI.19-18-07846.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. DiGregorio D. A., Vergara J. L. Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. J Physiol. 1997 Dec 15;505(Pt 3):585–592. doi: 10.1111/j.1469-7793.1997.585ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drust D. S., Creutz C. E. Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla. J Neurochem. 1991 Feb;56(2):469–478. doi: 10.1111/j.1471-4159.1991.tb08174.x. [DOI] [PubMed] [Google Scholar]
  15. Engisch K. L., Nowycky M. C. Compensatory and excess retrieval: two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. J Physiol. 1998 Feb 1;506(Pt 3):591–608. doi: 10.1111/j.1469-7793.1998.591bv.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Escobar A. L., Monck J. R., Fernandez J. M., Vergara J. L. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature. 1994 Feb 24;367(6465):739–741. doi: 10.1038/367739a0. [DOI] [PubMed] [Google Scholar]
  17. Escobar A. L., Velez P., Kim A. M., Cifuentes F., Fill M., Vergara J. L. Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. Pflugers Arch. 1997 Sep;434(5):615–631. doi: 10.1007/s004240050444. [DOI] [PubMed] [Google Scholar]
  18. Fierro L., Llano I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol. 1996 Nov 1;496(Pt 3):617–625. doi: 10.1113/jphysiol.1996.sp021713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  20. Hall J. D., Betarbet S., Jaramillo F. Endogenous buffers limit the spread of free calcium in hair cells. Biophys J. 1997 Sep;73(3):1243–1252. doi: 10.1016/S0006-3495(97)78157-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Heizmann C. W. Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys. 1992 Oct;11(5):411–425. [PubMed] [Google Scholar]
  22. Herrington J., Park Y. B., Babcock D. F., Hille B. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron. 1996 Jan;16(1):219–228. doi: 10.1016/s0896-6273(00)80038-0. [DOI] [PubMed] [Google Scholar]
  23. Hikita T., Bader M. F., Trifaró J. M. Adrenal chromaffin cell calmodulin: its subcellular distribution and binding to chromaffin granule membrane proteins. J Neurochem. 1984 Oct;43(4):1087–1097. doi: 10.1111/j.1471-4159.1984.tb12848.x. [DOI] [PubMed] [Google Scholar]
  24. Jost M., Thiel C., Weber K., Gerke V. Mapping of three unique Ca(2+)-binding sites in human annexin II. Eur J Biochem. 1992 Aug 1;207(3):923–930. doi: 10.1111/j.1432-1033.1992.tb17125.x. [DOI] [PubMed] [Google Scholar]
  25. Kim K. T., Westhead E. W. Cellular responses to Ca2+ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic Ca2+ and secretion from bovine chromaffin cells. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9881–9885. doi: 10.1073/pnas.86.24.9881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klingauf J., Neher E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys J. 1997 Feb;72(2 Pt 1):674–690. doi: 10.1016/s0006-3495(97)78704-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  28. Leathers V. L., Linse S., Forsén S., Norman A. W. Calbindin-D28K, a 1 alpha,25-dihydroxyvitamin D3-induced calcium-binding protein, binds five or six Ca2+ ions with high affinity. J Biol Chem. 1990 Jun 15;265(17):9838–9841. [PubMed] [Google Scholar]
  29. Linse S., Helmersson A., Forsén S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991 May 5;266(13):8050–8054. [PubMed] [Google Scholar]
  30. Martin S. R., Linse S., Johansson C., Bayley P. M., Forsén S. Protein surface charges and Ca2+ binding to individual sites in calbindin D9k: stopped-flow studies. Biochemistry. 1990 May 1;29(17):4188–4193. doi: 10.1021/bi00469a023. [DOI] [PubMed] [Google Scholar]
  31. McFerran B. W., Graham M. E., Burgoyne R. D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem. 1998 Aug 28;273(35):22768–22772. doi: 10.1074/jbc.273.35.22768. [DOI] [PubMed] [Google Scholar]
  32. Minta A., Kao J. P., Tsien R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989 May 15;264(14):8171–8178. [PubMed] [Google Scholar]
  33. Monck J. R., Oberhauser A. F., Keating T. J., Fernandez J. M. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells. J Cell Biol. 1992 Feb;116(3):745–759. doi: 10.1083/jcb.116.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Monck J. R., Reynolds E. E., Thomas A. P., Williamson J. R. Novel kinetics of single cell Ca2+ transients in stimulated hepatocytes and A10 cells measured using fura-2 and fluorescent videomicroscopy. J Biol Chem. 1988 Apr 5;263(10):4569–4575. [PubMed] [Google Scholar]
  35. Monck J. R., Robinson I. M., Escobar A. L., Vergara J. L., Fernandez J. M. Pulsed laser imaging of rapid Ca2+ gradients in excitable cells. Biophys J. 1994 Aug;67(2):505–514. doi: 10.1016/S0006-3495(94)80554-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Naraghi M., Müller T. H., Neher E. Two-dimensional determination of the cellular Ca2+ binding in bovine chromaffin cells. Biophys J. 1998 Oct;75(4):1635–1647. doi: 10.1016/S0006-3495(98)77606-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Neher E., Augustine G. J. Calcium gradients and buffers in bovine chromaffin cells. J Physiol. 1992 May;450:273–301. doi: 10.1113/jphysiol.1992.sp019127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  39. Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
  40. Neher E., Zucker R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron. 1993 Jan;10(1):21–30. doi: 10.1016/0896-6273(93)90238-m. [DOI] [PubMed] [Google Scholar]
  41. Nowycky M. C., Pinter M. J. Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J. 1993 Jan;64(1):77–91. doi: 10.1016/S0006-3495(93)81342-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. O'Sullivan A. J., Cheek T. R., Moreton R. B., Berridge M. J., Burgoyne R. D. Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 1989 Feb;8(2):401–411. doi: 10.1002/j.1460-2075.1989.tb03391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Oberholtzer J. C., Buettger C., Summers M. C., Matschinsky F. M. The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. Proc Natl Acad Sci U S A. 1988 May;85(10):3387–3390. doi: 10.1073/pnas.85.10.3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pan C. Y., Kao L. S. Catecholamine secretion from bovine adrenal chromaffin cells: the role of the Na+/Ca2+ exchanger and the intracellular Ca2+ pool. J Neurochem. 1997 Sep;69(3):1085–1092. doi: 10.1046/j.1471-4159.1997.69031085.x. [DOI] [PubMed] [Google Scholar]
  45. Pusch M., Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204–211. doi: 10.1007/BF00582316. [DOI] [PubMed] [Google Scholar]
  46. Sala F., Hernández-Cruz A. Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J. 1990 Feb;57(2):313–324. doi: 10.1016/S0006-3495(90)82533-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schwaller B., Durussel I., Jermann D., Herrmann B., Cox J. A. Comparison of the Ca2+-binding properties of human recombinant calretinin-22k and calretinin. J Biol Chem. 1997 Nov 21;272(47):29663–29671. doi: 10.1074/jbc.272.47.29663. [DOI] [PubMed] [Google Scholar]
  48. Seward E. P., Chernevskaya N. I., Nowycky M. C. Ba2+ ions evoke two kinetically distinct patterns of exocytosis in chromaffin cells, but not in neurohypophysial nerve terminals. J Neurosci. 1996 Feb 15;16(4):1370–1379. doi: 10.1523/JNEUROSCI.16-04-01370.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seward E. P., Nowycky M. C. Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses. J Neurosci. 1996 Jan 15;16(2):553–562. doi: 10.1523/JNEUROSCI.16-02-00553.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Simon S. M., Llinás R. R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J. 1985 Sep;48(3):485–498. doi: 10.1016/S0006-3495(85)83804-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Smith S. J., Zucker R. S. Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J Physiol. 1980 Mar;300:167–196. doi: 10.1113/jphysiol.1980.sp013157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stevens J., Rogers J. H. Chick calretinin: purification, composition, and metal binding activity of native and recombinant forms. Protein Expr Purif. 1997 Mar;9(2):171–181. doi: 10.1006/prep.1996.0677. [DOI] [PubMed] [Google Scholar]
  53. Tang Y. M., Travis E. R., Wightman R. M., Schneider A. S. Sodium-calcium exchange affects local calcium signal decay and the rate of exocytotic secretion in single chromaffin cells. J Neurochem. 2000 Feb;74(2):702–710. doi: 10.1046/j.1471-4159.2000.740702.x. [DOI] [PubMed] [Google Scholar]
  54. Thiel C., Weber K., Gerke V. Characterization of a Ca(2+)-binding site in human annexin II by site-directed mutagenesis. J Biol Chem. 1991 Aug 5;266(22):14732–14739. [PubMed] [Google Scholar]
  55. Timmerman M. P., Ashley C. C. Fura-2 diffusion and its use as an indicator of transient free calcium changes in single striated muscle cells. FEBS Lett. 1986 Dec 1;209(1):1–8. doi: 10.1016/0014-5793(86)81073-0. [DOI] [PubMed] [Google Scholar]
  56. Winsky L., Kuźnicki J. Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. J Neurochem. 1995 Jul;65(1):381–388. doi: 10.1046/j.1471-4159.1995.65010381.x. [DOI] [PubMed] [Google Scholar]
  57. Xu T., Naraghi M., Kang H., Neher E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J. 1997 Jul;73(1):532–545. doi: 10.1016/S0006-3495(97)78091-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zucker R. S., Stockbridge N. Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse. J Neurosci. 1983 Jun;3(6):1263–1269. doi: 10.1523/JNEUROSCI.03-06-01263.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES