Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1821–1832. doi: 10.1016/S0006-3495(00)76432-0

Cytoplasmic molecular delivery with shock waves: importance of impulse.

T Kodama 1, M R Hamblin 1, A G Doukas 1
PMCID: PMC1301074  PMID: 11023888

Abstract

Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus.

Full Text

The Full Text of this article is available as a PDF (428.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbieri L., Battelli M. G., Stirpe F. Ribosome-inactivating proteins from plants. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):237–282. doi: 10.1016/0304-4157(93)90002-6. [DOI] [PubMed] [Google Scholar]
  2. Basrai M. A., Naider F., Becker J. M. Internalization of lucifer yellow in Candida albicans by fluid phase endocytosis. J Gen Microbiol. 1990 Jun;136(6):1059–1065. doi: 10.1099/00221287-136-6-1059. [DOI] [PubMed] [Google Scholar]
  3. Bohrer M. P., Deen W. M., Robertson C. R., Troy J. L., Brenner B. M. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J Gen Physiol. 1979 Nov;74(5):583–593. doi: 10.1085/jgp.74.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brümmer F., Brenner J., Bräuner T., Hülser D. F. Effect of shock waves on suspended and immobilized L1210 cells. Ultrasound Med Biol. 1989;15(3):229–239. doi: 10.1016/0301-5629(89)90067-7. [DOI] [PubMed] [Google Scholar]
  5. Cass C. E., Young J. D., Baldwin S. A. Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol. 1998;76(5):761–770. doi: 10.1139/bcb-76-5-761. [DOI] [PubMed] [Google Scholar]
  6. Cockcroft S. Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic. Bioessays. 1998 May;20(5):423–432. doi: 10.1002/(SICI)1521-1878(199805)20:5<423::AID-BIES9>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  7. Coleman A. J., Saunders J. E. A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics. 1993;31(2):75–89. doi: 10.1016/0041-624x(93)90037-z. [DOI] [PubMed] [Google Scholar]
  8. Coleman A. J., Saunders J. E. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound Med Biol. 1989;15(3):213–227. doi: 10.1016/0301-5629(89)90066-5. [DOI] [PubMed] [Google Scholar]
  9. Connelly M. C., Robbins B. L., Fridland A. Mechanism of uptake of the phosphonate analog (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC) in Vero cells. Biochem Pharmacol. 1993 Sep 14;46(6):1053–1057. doi: 10.1016/0006-2952(93)90670-r. [DOI] [PubMed] [Google Scholar]
  10. Curry F. E., Huxley V. H., Adamson R. H. Permeability of single capillaries to intermediate-sized colored solutes. Am J Physiol. 1983 Sep;245(3):H495–H505. doi: 10.1152/ajpheart.1983.245.3.H495. [DOI] [PubMed] [Google Scholar]
  11. Dalecki D., Raeman C. H., Child S. Z., Carstensen E. L. Thresholds for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound Med Biol. 1995;21(9):1239–1246. doi: 10.1016/0301-5629(95)02014-4. [DOI] [PubMed] [Google Scholar]
  12. Delius M., Adams G. Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res. 1999 Oct 15;59(20):5227–5232. [PubMed] [Google Scholar]
  13. Doukas A. G., McAuliffe D. J., Flotte T. J. Biological effects of laser-induced shock waves: structural and functional cell damage in vitro. Ultrasound Med Biol. 1993;19(2):137–146. doi: 10.1016/0301-5629(93)90006-a. [DOI] [PubMed] [Google Scholar]
  14. Doukas A. G., McAuliffe D. J., Lee S., Venugopalan V., Flotte T. J. Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient. Ultrasound Med Biol. 1995;21(7):961–967. doi: 10.1016/0301-5629(95)00027-o. [DOI] [PubMed] [Google Scholar]
  15. Feinstein M. B., Fernandez S. M., Sha'afi R. I. Fluidity of natural membranes and phosphatidylserine and ganglioside dispersions. Effect of local anesthetics, cholesterol and protein. Biochim Biophys Acta. 1975 Dec 16;413(3):354–370. doi: 10.1016/0005-2736(75)90121-2. [DOI] [PubMed] [Google Scholar]
  16. Finkel T., Epstein S. E. Gene therapy for vascular disease. FASEB J. 1995 Jul;9(10):843–851. doi: 10.1096/fasebj.9.10.7615154. [DOI] [PubMed] [Google Scholar]
  17. Fox J. R., Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res. 1979 Sep;18(2):255–276. doi: 10.1016/0026-2862(79)90033-5. [DOI] [PubMed] [Google Scholar]
  18. Frenz M, Paltauf G, Schmidt-Kloiber H. Laser-generated cavitation in absorbing liquid induced by acoustic diffraction. Phys Rev Lett. 1996 May 6;76(19):3546–3549. doi: 10.1103/PhysRevLett.76.3546. [DOI] [PubMed] [Google Scholar]
  19. Fueyo J., Gomez-Manzano C., Yung W. K., Kyritsis A. P. Targeting in gene therapy for gliomas. Arch Neurol. 1999 Apr;56(4):445–448. doi: 10.1001/archneur.56.4.445. [DOI] [PubMed] [Google Scholar]
  20. Gambihler S., Delius M., Ellwart J. W. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol. 1994 Sep;141(3):267–275. doi: 10.1007/BF00235136. [DOI] [PubMed] [Google Scholar]
  21. Gambihler S., Delius M. In vitro interaction of lithotripter shock waves and cytotoxic drugs. Br J Cancer. 1992 Jul;66(1):69–73. doi: 10.1038/bjc.1992.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gambihler S., Delius M. Transient increase in membrane permeability of L1210 cells upon exposure to lithotripter shock waves in vitro. Naturwissenschaften. 1992 Jul;79(7):328–329. doi: 10.1007/BF01138714. [DOI] [PubMed] [Google Scholar]
  23. Glogauer M., McCulloch C. A. Introduction of large molecules into viable fibroblasts by electroporation: optimization of loading and identification of labeled cellular compartments. Exp Cell Res. 1992 Jun;200(2):227–234. doi: 10.1016/0014-4827(92)90168-8. [DOI] [PubMed] [Google Scholar]
  24. Gutierrez A. A., Lemoine N. R., Sikora K. Gene therapy for cancer. Lancet. 1992 Mar 21;339(8795):715–721. doi: 10.1016/0140-6736(92)90606-4. [DOI] [PubMed] [Google Scholar]
  25. Hapala I. Breaking the barrier: methods for reversible permeabilization of cellular membranes. Crit Rev Biotechnol. 1997;17(2):105–122. doi: 10.3109/07388559709146609. [DOI] [PubMed] [Google Scholar]
  26. Ho S. Y., Mittal G. S. Electroporation of cell membranes: a review. Crit Rev Biotechnol. 1996;16(4):349–362. doi: 10.3109/07388559609147426. [DOI] [PubMed] [Google Scholar]
  27. Kambe M., Ioritani N., Shirai S., Kambe K., Kuwahara M., Arita D., Funato T., Shimodaira H., Gamo M., Orikasa S. Enhancement of chemotherapeutic effects with focused shock waves: extracorporeal shock wave chemotherapy (ESWC). In Vivo. 1996 May-Jun;10(3):369–375. [PubMed] [Google Scholar]
  28. Kaneda Y. Development of a novel fusogenic viral liposome system (HVJ-liposomes) and its applications to the treatment of acquired diseases. Mol Membr Biol. 1999 Jan-Mar;16(1):119–122. doi: 10.1080/096876899294841. [DOI] [PubMed] [Google Scholar]
  29. Kodama T., Takayama K. Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. Ultrasound Med Biol. 1998 Jun;24(5):723–738. doi: 10.1016/s0301-5629(98)00022-2. [DOI] [PubMed] [Google Scholar]
  30. Kodama T., Uenohara H., Takayama K. Innovative technology for tissue disruption by explosive-induced shock waves. Ultrasound Med Biol. 1998 Nov;24(9):1459–1466. doi: 10.1016/s0301-5629(98)00094-5. [DOI] [PubMed] [Google Scholar]
  31. Lee S., Anderson T., Zhang H., Flotte T. J., Doukas A. G. Alteration of cell membrane by stress waves in vitro. Ultrasound Med Biol. 1996;22(9):1285–1293. doi: 10.1016/s0301-5629(96)00149-4. [DOI] [PubMed] [Google Scholar]
  32. Lee S., McAuliffe D. J., Zhang H., Xu Z., Taitelbaum J., Flotte T. J., Doukas A. G. Stress-wave-induced membrane permeation of red blood cells is facilitated by aquaporins. Ultrasound Med Biol. 1997;23(7):1089–1094. doi: 10.1016/s0301-5629(97)00083-5. [DOI] [PubMed] [Google Scholar]
  33. Lieber M. R., Steck T. L. A description of the holes in human erythrocyte membrane ghosts. J Biol Chem. 1982 Oct 10;257(19):11651–11659. [PubMed] [Google Scholar]
  34. Lieber M. R., Steck T. L. Dynamics of the holes in human erythrocyte membrane ghosts. J Biol Chem. 1982 Oct 10;257(19):11660–11666. [PubMed] [Google Scholar]
  35. Liu J., Lewis T. N., Prausnitz M. R. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res. 1998 Jun;15(6):918–924. doi: 10.1023/a:1011984817567. [DOI] [PubMed] [Google Scholar]
  36. Mayer R., Schenk E., Child S., Norton S., Cox C., Hartman C., Cox C., Carstensen E. Pressure threshold for shock wave induced renal hemorrhage. J Urol. 1990 Dec;144(6):1505–1509. doi: 10.1016/s0022-5347(17)39787-2. [DOI] [PubMed] [Google Scholar]
  37. McAuliffe D. J., Lee S., Flotte T. J., Doukas A. G. Stress-wave-assisted transport through the plasma membrane in vitro. Lasers Surg Med. 1997;20(2):216–222. doi: 10.1002/(sici)1096-9101(1997)20:2<216::aid-lsm14>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  38. Miller D. L., Bao S., Morris J. E. Sonoporation of cultured cells in the rotating tube exposure system. Ultrasound Med Biol. 1999 Jan;25(1):143–149. doi: 10.1016/s0301-5629(98)00137-9. [DOI] [PubMed] [Google Scholar]
  39. Miller D. L., Thomas R. M. Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. Ultrasound Med Biol. 1995;21(2):249–257. doi: 10.1016/s0301-5629(94)00112-x. [DOI] [PubMed] [Google Scholar]
  40. Miller D. L., Williams A. R., Morris J. E., Chrisler W. B. Sonoporation of erythrocytes by lithotripter shockwaves in vitro. Ultrasonics. 1998 Aug;36(9):947–952. doi: 10.1016/s0041-624x(98)00017-1. [DOI] [PubMed] [Google Scholar]
  41. Mir L. M., Banoun H., Paoletti C. Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res. 1988 Mar;175(1):15–25. doi: 10.1016/0014-4827(88)90251-0. [DOI] [PubMed] [Google Scholar]
  42. Mukherjee S., Ghosh R. N., Maxfield F. R. Endocytosis. Physiol Rev. 1997 Jul;77(3):759–803. doi: 10.1152/physrev.1997.77.3.759. [DOI] [PubMed] [Google Scholar]
  43. Nugent L. J., Jain R. K. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Physiol. 1984 Jan;246(1 Pt 2):H129–H137. doi: 10.1152/ajpheart.1984.246.1.H129. [DOI] [PubMed] [Google Scholar]
  44. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  45. Peters R. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 1984 Aug;3(8):1831–1836. doi: 10.1002/j.1460-2075.1984.tb02055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Raeman C. H., Child S. Z., Dalecki D., Mayer R., Parker K. J., Carstensen E. L. Damage to murine kidney and intestine from exposure to the fields of a piezoelectric lithotripter. Ultrasound Med Biol. 1994;20(6):589–594. doi: 10.1016/0301-5629(94)90095-7. [DOI] [PubMed] [Google Scholar]
  47. Schindler M., Jiang L. W. Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol. 1986 Mar;102(3):859–862. doi: 10.1083/jcb.102.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schwartz R. S., Musto S., Fabry M. E., Nagel R. L. Two distinct pathways mediate the formation of intermediate density cells and hyperdense cells from normal density sickle red blood cells. Blood. 1998 Dec 15;92(12):4844–4855. [PubMed] [Google Scholar]
  49. Schäfer T., Karli U. O., Gratwohl E. K., Schweizer F. E., Burger M. M. Digitonin-permeabilized cells are exocytosis competent. J Neurochem. 1987 Dec;49(6):1697–1707. doi: 10.1111/j.1471-4159.1987.tb02427.x. [DOI] [PubMed] [Google Scholar]
  50. Spiller D. G., Giles R. V., Grzybowski J., Tidd D. M., Clark R. E. Improving the intracellular delivery and molecular efficacy of antisense oligonucleotides in chronic myeloid leukemia cells: a comparison of streptolysin-O permeabilization, electroporation, and lipophilic conjugation. Blood. 1998 Jun 15;91(12):4738–4746. [PubMed] [Google Scholar]
  51. Steinbach P., Hofstädter F., Nicolai H., Rössler W., Wieland W. In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol. 1992;18(8):691–699. doi: 10.1016/0301-5629(92)90120-y. [DOI] [PubMed] [Google Scholar]
  52. TENNANT J. R. EVALUATION OF THE TRYPAN BLUE TECHNIQUE FOR DETERMINATION OF CELL VIABILITY. Transplantation. 1964 Nov;2:685–694. doi: 10.1097/00007890-196411000-00001. [DOI] [PubMed] [Google Scholar]
  53. Van Blitterswijk W. J., Hilkmann H., Hengeveld T. Differences in membrane lipid composition and fluidity of transplanted GRSL lymphoma cells, depending on their site of growth in the mouse. Biochim Biophys Acta. 1984 Dec 19;778(3):521–529. doi: 10.1016/0005-2736(84)90403-6. [DOI] [PubMed] [Google Scholar]
  54. Weiss N., Delius M., Gambihler S., Eichholtz-Wirth H., Dirschedl P., Brendel W. Effect of shock waves and cisplatin on cisplatin-sensitive and -resistant rodent tumors in vivo. Int J Cancer. 1994 Sep 1;58(5):693–699. doi: 10.1002/ijc.2910580513. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES