Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1858–1866. doi: 10.1016/S0006-3495(00)76435-6

Concurrent binding to multiple ligands: kinetic rates of CD16b for membrane-bound IgG1 and IgG2.

T E Williams 1, P Selvaraj 1, C Zhu 1
PMCID: PMC1301077  PMID: 11023891

Abstract

CD16b (FcgammaRIIIb) is the most common receptor for the Fc domain of IgG on leukocytes. The binding of Fc receptors to immunoglobulin triggers a wide array of immune responses. In published assays measuring the reaction of CD16b with isotypes of soluble IgG, the affinity for IgG1 was low and that for IgG2 was undetectable. Here we report the first measurement of kinetic rates of CD16b binding to membrane-bound IgG isotypes-a physically distinct and physiologically more relevant presentation-using a recently developed micropipette method. In contrast to the soluble data, we found clearly measurable IgG2 binding, with a forward kinetic rate six-fold lower than that of IgG1 but with an equilibrium affinity only threefold lower. This suggests a nonnegligible role for IgG2 in Fc-mediated immune responses, particularly in longer duration contacts. The binding constants were measured from two sets of experiments. Single-isotype experiments were analyzed by an existing model (, Biophys. J. 75:1553-1572). The resulting kinetic rates were used as input to an extended model (, Biophys. J. 79:1850-1857.) to predict the results of mixed-isotype experiments. This design enabled rigorous validation of the concurrent binding model through a test of its predictive ability.

Full Text

The Full Text of this article is available as a PDF (159.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I., Dembo M., Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J. 1984 Jun;45(6):1051–1064. doi: 10.1016/S0006-3495(84)84252-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  3. Bikoue A., George F., Poncelet P., Mutin M., Janossy G., Sampol J. Quantitative analysis of leukocyte membrane antigen expression: normal adult values. Cytometry. 1996 Jun 15;26(2):137–147. doi: 10.1002/(SICI)1097-0320(19960615)26:2<137::AID-CYTO7>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  4. Burton D. R. Immunoglobulin G: functional sites. Mol Immunol. 1985 Mar;22(3):161–206. doi: 10.1016/0161-5890(85)90151-8. [DOI] [PubMed] [Google Scholar]
  5. Chesla S. E., Li P., Nagarajan S., Selvaraj P., Zhu C. The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of FcgammaRIII (CD16). J Biol Chem. 2000 Apr 7;275(14):10235–10246. doi: 10.1074/jbc.275.14.10235. [DOI] [PubMed] [Google Scholar]
  6. Chesla S. E., Selvaraj P., Zhu C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J. 1998 Sep;75(3):1553–1572. doi: 10.1016/S0006-3495(98)74074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark M. R., Stuart S. G., Kimberly R. P., Ory P. A., Goldstein I. M. A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur J Immunol. 1991 Aug;21(8):1911–1916. doi: 10.1002/eji.1830210820. [DOI] [PubMed] [Google Scholar]
  8. Clynes R., Takechi Y., Moroi Y., Houghton A., Ravetch J. V. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):652–656. doi: 10.1073/pnas.95.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dumaswala U. J., Wilson M. J., José T., Daleke D. L. Glutamine- and phosphate-containing hypotonic storage media better maintain erythrocyte membrane physical properties. Blood. 1996 Jul 15;88(2):697–704. [PubMed] [Google Scholar]
  10. Dustin M. L., Ferguson L. M., Chan P. Y., Springer T. A., Golan D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J Cell Biol. 1996 Feb;132(3):465–474. doi: 10.1083/jcb.132.3.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huizinga T. W., Kerst M., Nuyens J. H., Vlug A., von dem Borne A. E., Roos D., Tetteroo P. A. Binding characteristics of dimeric IgG subclass complexes to human neutrophils. J Immunol. 1989 Apr 1;142(7):2359–2364. [PubMed] [Google Scholar]
  12. Jefferis R., Kumararatne D. S. Selective IgG subclass deficiency: quantification and clinical relevance. Clin Exp Immunol. 1990 Sep;81(3):357–367. doi: 10.1111/j.1365-2249.1990.tb05339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuo S. C., Lauffenburger D. A. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys J. 1993 Nov;65(5):2191–2200. doi: 10.1016/S0006-3495(93)81277-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lowry M. B., Duchemin A. M., Robinson J. M., Anderson C. L. Functional separation of pseudopod extension and particle internalization during Fc gamma receptor-mediated phagocytosis. J Exp Med. 1998 Jan 19;187(2):161–176. doi: 10.1084/jem.187.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nagarajan S., Chesla S., Cobern L., Anderson P., Zhu C., Selvaraj P. Ligand binding and phagocytosis by CD16 (Fc gamma receptor III) isoforms. Phagocytic signaling by associated zeta and gamma subunits in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 27;270(43):25762–25770. doi: 10.1074/jbc.270.43.25762. [DOI] [PubMed] [Google Scholar]
  16. Nayve F. R., Jr, Misato T., Matsumura M., Kataoka H. HBs-MAb production in perfusion culture with selective ammonia removal system. J Biotechnol. 1994 May 31;34(3):217–225. doi: 10.1016/0168-1656(94)90057-4. [DOI] [PubMed] [Google Scholar]
  17. Poncelet P., Carayon P. Cytofluorometric quantification of cell-surface antigens by indirect immunofluorescence using monoclonal antibodies. J Immunol Methods. 1985 Dec 17;85(1):65–74. doi: 10.1016/0022-1759(85)90274-1. [DOI] [PubMed] [Google Scholar]
  18. Rascu A., Repp R., Westerdaal N. A., Kalden J. R., van de Winkel J. G. Clinical relevance of Fc gamma receptor polymorphisms. Ann N Y Acad Sci. 1997 Apr 5;815:282–295. doi: 10.1111/j.1749-6632.1997.tb52070.x. [DOI] [PubMed] [Google Scholar]
  19. Reuveny S., Velez D., Macmillan J. D., Miller L. Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods. 1986 Jan 22;86(1):53–59. doi: 10.1016/0022-1759(86)90264-4. [DOI] [PubMed] [Google Scholar]
  20. Selvaraj P., Carpén O., Hibbs M. L., Springer T. A. Natural killer cell and granulocyte Fc gamma receptor III (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989 Nov 15;143(10):3283–3288. [PubMed] [Google Scholar]
  21. Selvaraj P., Dustin M. L., Mitnacht R., Hünig T., Springer T. A., Plunkett M. L. Rosetting of human T lymphocytes with sheep and human erythrocytes. Comparison of human and sheep ligand binding using purified E receptor. J Immunol. 1987 Oct 15;139(8):2690–2695. [PubMed] [Google Scholar]
  22. Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature. 1988 Jun 9;333(6173):565–567. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  23. Serke S., van Lessen A., Huhn D. Quantitative fluorescence flow cytometry: a comparison of the three techniques for direct and indirect immunofluorescence. Cytometry. 1998 Oct 1;33(2):179–187. doi: 10.1002/(sici)1097-0320(19981001)33:2<179::aid-cyto12>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  24. Warmerdam P. A., van de Winkel J. G., Gosselin E. J., Capel P. J. Molecular basis for a polymorphism of human Fc gamma receptor II (CD32). J Exp Med. 1990 Jul 1;172(1):19–25. doi: 10.1084/jem.172.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williams T. E., Nagarajan S., Selvaraj P., Zhu C. Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG. Biophys J. 2000 Oct;79(4):1867–1875. doi: 10.1016/S0006-3495(00)76436-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhu C., Williams T. E. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys J. 2000 Oct;79(4):1850–1857. doi: 10.1016/S0006-3495(00)76434-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES