Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1867–1875. doi: 10.1016/S0006-3495(00)76436-8

Concurrent and independent binding of Fcgamma receptors IIa and IIIb to surface-bound IgG.

T E Williams 1, S Nagarajan 1, P Selvaraj 1, C Zhu 1
PMCID: PMC1301078  PMID: 11023892

Abstract

Fc receptor-antibody interactions are key mechanisms through which antibody effector functions are mediated. Neutrophils coexpress two low-affinity Fcgamma receptors, CD16b (FcgammaRIIIb) and CD32a (FcgammaRIIa), possessing overlapping ligand binding specificities but distinct membrane anchor and signaling capacities. Using K562 cell transfectants as a model, the kinetics of both separate and concurrent binding of CD16b and CD32a to surface-bound IgG ligands were studied. CD16b bound human IgG with 2-3 times higher affinity than did CD32a (A(c)K(a) = 4.1 and 1.6 x 10(-7) microm(4), respectively) and both FcgammaRs had similar reverse kinetic rates (k(r) = 0.5 and 0.4 s(-1), respectively). Because CD16b is expressed on neutrophils at a 4-5 times higher density than CD32a, our results suggest that CD16b plays the dominant role in binding of neutrophils to immobilized IgG. The question of possible cross-regulation of binding affinity between CD16b and CD32a was investigated using our multispecies concurrent binding model (Zhu and Williams, Biophys. J. 79:1850-1857, 2000). Because the model assumes independent binding (no cooperation among different species), the excellent agreement between the model predictions and the experimental data suggests that, when coexpressed on K562 cells, these two FcgammaRs do not interact in a manner that alters the kinetic rates of either molecule.

Full Text

The Full Text of this article is available as a PDF (193.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chesla S. E., Li P., Nagarajan S., Selvaraj P., Zhu C. The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of FcgammaRIII (CD16). J Biol Chem. 2000 Apr 7;275(14):10235–10246. doi: 10.1074/jbc.275.14.10235. [DOI] [PubMed] [Google Scholar]
  2. Chesla S. E., Selvaraj P., Zhu C. Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J. 1998 Sep;75(3):1553–1572. doi: 10.1016/S0006-3495(98)74074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edberg J. C., Kimberly R. P. Modulation of Fc gamma and complement receptor function by the glycosyl-phosphatidylinositol-anchored form of Fc gamma RIII. J Immunol. 1994 Jun 15;152(12):5826–5835. [PubMed] [Google Scholar]
  4. Edberg J. C., Moon J. J., Chang D. J., Kimberly R. P. Differential regulation of human neutrophil FcgammaRIIa (CD32) and FcgammaRIIIb (CD16)-induced Ca2+ transients. J Biol Chem. 1998 Apr 3;273(14):8071–8079. doi: 10.1074/jbc.273.14.8071. [DOI] [PubMed] [Google Scholar]
  5. Edberg J. C., Redecha P. B., Salmon J. E., Kimberly R. P. Human Fc gamma RIII (CD16). Isoforms with distinct allelic expression, extracellular domains, and membrane linkages on polymorphonuclear and natural killer cells. J Immunol. 1989 Sep 1;143(5):1642–1649. [PubMed] [Google Scholar]
  6. Fanger M. W., Shen L., Graziano R. F., Guyre P. M. Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today. 1989 Mar;10(3):92–99. doi: 10.1016/0167-5699(89)90234-X. [DOI] [PubMed] [Google Scholar]
  7. Huizinga T. W., Dolman K. M., van der Linden N. J., Kleijer M., Nuijens J. H., von dem Borne A. E., Roos D. Phosphatidylinositol-linked FcRIII mediates exocytosis of neutrophil granule proteins, but does not mediate initiation of the respiratory burst. J Immunol. 1990 Feb 15;144(4):1432–1437. [PubMed] [Google Scholar]
  8. Kimberly R. P., Ahlstrom J. W., Click M. E., Edberg J. C. The glycosyl phosphatidylinositol-linked Fc gamma RIIIPMN mediates transmembrane signaling events distinct from Fc gamma RII. J Exp Med. 1990 Apr 1;171(4):1239–1255. doi: 10.1084/jem.171.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kofler R., Wick G. Some methodologic aspects of the chromium chloride method for coupling antigen to erythrocytes. J Immunol Methods. 1977;16(3):201–209. doi: 10.1016/0022-1759(77)90198-3. [DOI] [PubMed] [Google Scholar]
  10. Lanier L. L., Ruitenberg J., Bolhuis R. L., Borst J., Phillips J. H., Testi R. Structural and serological heterogeneity of gamma/delta T cell antigen receptor expression in thymus and peripheral blood. Eur J Immunol. 1988 Dec;18(12):1985–1992. doi: 10.1002/eji.1830181218. [DOI] [PubMed] [Google Scholar]
  11. Li P., Selvaraj P., Zhu C. Analysis of competition binding between soluble and membrane-bound ligands for cell surface receptors. Biophys J. 1999 Dec;77(6):3394–3406. doi: 10.1016/S0006-3495(99)77171-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nagarajan S., Chesla S., Cobern L., Anderson P., Zhu C., Selvaraj P. Ligand binding and phagocytosis by CD16 (Fc gamma receptor III) isoforms. Phagocytic signaling by associated zeta and gamma subunits in Chinese hamster ovary cells. J Biol Chem. 1995 Oct 27;270(43):25762–25770. doi: 10.1074/jbc.270.43.25762. [DOI] [PubMed] [Google Scholar]
  13. Nagarajan S., Venkiteswaran K., Anderson M., Sayed U., Zhu C., Selvaraj P. Cell-specific, activation-dependent regulation of neutrophil CD32A ligand-binding function. Blood. 2000 Feb 1;95(3):1069–1077. [PubMed] [Google Scholar]
  14. Naziruddin B., Duffy B. F., Tucker J., Mohanakumar T. Evidence for cross-regulation of Fc gamma RIIIB (CD16) receptor-mediated signaling by Fc gamma RII (CD32) expressed on polymorphonuclear neutrophils. J Immunol. 1992 Dec 1;149(11):3702–3709. [PubMed] [Google Scholar]
  15. Perussia B., Acuto O., Terhorst C., Faust J., Lazarus R., Fanning V., Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. II. Studies of B73.1 antibody-antigen interaction on the lymphocyte membrane. J Immunol. 1983 May;130(5):2142–2148. [PubMed] [Google Scholar]
  16. Piper J. W., Swerlick R. A., Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J. 1998 Jan;74(1):492–513. doi: 10.1016/S0006-3495(98)77807-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rascu A., Repp R., Westerdaal N. A., Kalden J. R., van de Winkel J. G. Clinical relevance of Fc gamma receptor polymorphisms. Ann N Y Acad Sci. 1997 Apr 5;815:282–295. doi: 10.1111/j.1749-6632.1997.tb52070.x. [DOI] [PubMed] [Google Scholar]
  18. Ravetch J. V., Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989 Aug 1;170(2):481–497. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scallon B. J., Scigliano E., Freedman V. H., Miedel M. C., Pan Y. C., Unkeless J. C., Kochan J. P. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5079–5083. doi: 10.1073/pnas.86.13.5079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Selvaraj P., Carpén O., Hibbs M. L., Springer T. A. Natural killer cell and granulocyte Fc gamma receptor III (CD16) differ in membrane anchor and signal transduction. J Immunol. 1989 Nov 15;143(10):3283–3288. [PubMed] [Google Scholar]
  21. Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature. 1988 Jun 9;333(6173):565–567. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  22. Shen L., Guyre P. M., Fanger M. W. Polymorphonuclear leukocyte function triggered through the high affinity Fc receptor for monomeric IgG. J Immunol. 1987 Jul 15;139(2):534–538. [PubMed] [Google Scholar]
  23. Warmerdam P. A., van de Winkel J. G., Gosselin E. J., Capel P. J. Molecular basis for a polymorphism of human Fc gamma receptor II (CD32). J Exp Med. 1990 Jul 1;172(1):19–25. doi: 10.1084/jem.172.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williams T. E., Selvaraj P., Zhu C. Concurrent binding to multiple ligands: kinetic rates of CD16b for membrane-bound IgG1 and IgG2. Biophys J. 2000 Oct;79(4):1858–1866. doi: 10.1016/S0006-3495(00)76435-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhu C., Williams T. E. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophys J. 2000 Oct;79(4):1850–1857. doi: 10.1016/S0006-3495(00)76434-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES