Abstract
After axonal severance, a barrier forms at the cut ends to rapidly restrict bulk inflow and outflow. In severed crayfish axons we used the exclusion of hydrophilic, fluorescent dye molecules of different sizes (0.6-70 kDa) and the temporal decline of ionic injury current to levels in intact axons to determine the time course (0-120 min posttransection) of barrier formation and the posttransection time at which an axolemmal ionic seal had formed, as confirmed by the recovery of resting and action potentials. Confocal images showed that the posttransection time of dye exclusion was inversely related to dye molecular size. A barrier to the smallest dye molecule formed more rapidly (<60 min) than did the barrier to ionic entry (>60 min). These data show that axolemmal sealing lacks abrupt, large changes in barrier permeability that would be expected if a seal were to form suddenly, as previously assumed. Rather, these data suggest that a barrier forms gradually and slowly by restricting the movement of molecules of progressively smaller size amid injury-induced vesicles that accumulate, interact, and form junctional complexes with each other and the axolemma at the cut end. This process eventually culminates in an axolemmal ionic seal, and is not complete until ionic injury current returns to baseline levels measured in an undamaged axon.
Full Text
The Full Text of this article is available as a PDF (165.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballinger M. L., Bittner G. D. Ultrastructural studies of severed medial giant and other CNS axons in crayfish. Cell Tissue Res. 1980;208(1):123–133. doi: 10.1007/BF00234178. [DOI] [PubMed] [Google Scholar]
- Ballinger M. L., Blanchette A. R., Krause T. L., Smyers M. E., Fishman H. M., Bittner G. D. Delaminating myelin membranes help seal the cut ends of severed earthworm giant axons. J Neurobiol. 1997 Dec;33(7):945–960. doi: 10.1002/(sici)1097-4695(199712)33:7<945::aid-neu6>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
- Bi G. Q., Alderton J. M., Steinhardt R. A. Calcium-regulated exocytosis is required for cell membrane resealing. J Cell Biol. 1995 Dec;131(6 Pt 2):1747–1758. doi: 10.1083/jcb.131.6.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanchette A. R., Ballinger M. L., Fishman H. M., Bittner G. D. Calcium entry initiates processes that restore a barrier to dye entry in severed earthworm giant axons. Neurosci Lett. 1999 Sep 17;272(3):147–150. doi: 10.1016/s0304-3940(99)00544-3. [DOI] [PubMed] [Google Scholar]
- Detrait E., Eddleman C. S., Yoo S., Fukuda M., Nguyen M. P., Bittner G. D., Fishman H. M. Axolemmal repair requires proteins that mediate synaptic vesicle fusion. J Neurobiol. 2000 Sep 15;44(4):382–391. doi: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Eddleman C. S., Ballinger M. L., Smyers M. E., Fishman H. M., Bittner G. D. Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci. 1998 Jun 1;18(11):4029–4041. doi: 10.1523/JNEUROSCI.18-11-04029.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddleman C. S., Smyers M. E., Lore A., Fishman H. M., Bittner G. D. Anomalies associated with dye exclusion as a measure of axolemmal repair in invertebrate axons. Neurosci Lett. 1998 Nov 13;256(3):123–126. doi: 10.1016/s0304-3940(98)00709-5. [DOI] [PubMed] [Google Scholar]
- Fishman H. M., Krause T. L., Miller A. L., Bittner G. D. Retardation of the spread of extracellular Ca2+ into transected, unsealed squid giant axons. Biol Bull. 1995 Oct-Nov;189(2):208–209. doi: 10.1086/BBLv189n2p208. [DOI] [PubMed] [Google Scholar]
- George E. B., Glass J. D., Griffin J. W. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995 Oct;15(10):6445–6452. doi: 10.1523/JNEUROSCI.15-10-06445.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause T. L., Fishman H. M., Ballinger M. L., Bittner G. D. Extent and mechanism of sealing in transected giant axons of squid and earthworms. J Neurosci. 1994 Nov;14(11 Pt 1):6638–6651. doi: 10.1523/JNEUROSCI.14-11-06638.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichstein J. W., Ballinger M. L., Blanchette A. R., Fishman H. M., Bittner G. D. Structural changes at cut ends of earthworm giant axons in the interval between dye barrier formation and neuritic outgrowth. J Comp Neurol. 2000 Jan 10;416(2):143–157. doi: 10.1002/(sici)1096-9861(20000110)416:2<143::aid-cne2>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
- McNeil P. L., Vogel S. S., Miyake K., Terasaki M. Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci. 2000 Jun;113(Pt 11):1891–1902. doi: 10.1242/jcs.113.11.1891. [DOI] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Sattler R., Tymianski M., Feyaz I., Hafner M., Tator C. H. Voltage-sensitive calcium channels mediate calcium entry into cultured mammalian sympathetic neurons following neurite transection. Brain Res. 1996 May 6;719(1-2):239–246. doi: 10.1016/0006-8993(96)00125-4. [DOI] [PubMed] [Google Scholar]
- Steinhardt R. A., Bi G., Alderton J. M. Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science. 1994 Jan 21;263(5145):390–393. doi: 10.1126/science.7904084. [DOI] [PubMed] [Google Scholar]
- Strautman A. F., Cork R. J., Robinson K. R. The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci. 1990 Nov;10(11):3564–3575. doi: 10.1523/JNEUROSCI.10-11-03564.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaki M., Miyake K., McNeil P. L. Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J Cell Biol. 1997 Oct 6;139(1):63–74. doi: 10.1083/jcb.139.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie X. Y., Barrett J. N. Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci. 1991 Oct;11(10):3257–3267. doi: 10.1523/JNEUROSCI.11-10-03257.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yawo H., Kuno M. Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. J Neurosci. 1985 Jun;5(6):1626–1632. doi: 10.1523/JNEUROSCI.05-06-01626.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziv N. E., Spira M. E. Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J Neurophysiol. 1995 Dec;74(6):2625–2637. doi: 10.1152/jn.1995.74.6.2625. [DOI] [PubMed] [Google Scholar]