Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1891–1902. doi: 10.1016/S0006-3495(00)76439-3

Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system.

K C Chang 1, D A Hammer 1
PMCID: PMC1301081  PMID: 11023895

Abstract

Selectin-mediated leukocyte rolling is crucial for the proper function of the immune response. Recently, selectin-mediated rolling was recreated in a cell-free system (Biophysical Journal 71:2902-2907 (1996)); it was shown that sialyl Lewis(x) (sLe(x))-coated microspheres roll over E-selectin-coated surfaces under hydrodynamic flow. The cell-free system removes many confounding cellular features, such as cell deformability and signaling, allowing us to focus on the role of carbohydrate/selectin physical chemistry in mediating rolling. In this paper, we use adhesive dynamics, a computational method that allows us to simulate adhesion, to analyze the experimental data produced in the cell-free system. We simulate the effects of shear rate, ligand density, and number of receptors per particle on rolling velocity and compare them with experimental results obtained with the cell-free system. If we assume the population of particles is homogeneous in receptor density, we predict that particle rolling velocity calculated in simulations is more sensitive to shear rate than found in experiments. Also, the calculated rolling velocity is more sensitive to the number of receptors on the microspheres than to the ligand density on the surface, again in contrast to experiment. We argue that heterogeneity in the distribution of receptors throughout the particle population causes these discrepancies. We improve the agreement between experiment and simulation by calculating the average rolling velocity of a population whose receptors follow a normal distribution, suggesting heterogeneity among particles significantly affects the experimental results. Further comparison between theory and experiment yields an estimate of the reactive compliance of sLe(x)/E-selectin interactions of 0.25 A, close to that reported in the literature for E-selectin and its natural ligand (0.3 A). We also provide an estimate of the value of the intrinsic association rate (between 10(4) and 10(5) s(-1)) for the formation of sLe(x)/E-selectin bonds.

Full Text

The Full Text of this article is available as a PDF (133.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Chen S., Fuhlbrigge R., Puri K. D., Springer T. A. The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11631–11636. doi: 10.1073/pnas.95.20.11631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alon R., Chen S., Puri K. D., Finger E. B., Springer T. A. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol. 1997 Sep 8;138(5):1169–1180. doi: 10.1083/jcb.138.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  4. Alon R., Kassner P. D., Carr M. W., Finger E. B., Hemler M. E., Springer T. A. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol. 1995 Mar;128(6):1243–1253. doi: 10.1083/jcb.128.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  6. Brunk D. K., Goetz D. J., Hammer D. A. Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J. 1996 Nov;71(5):2902–2907. doi: 10.1016/S0006-3495(96)79487-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell J. J., Hedrick J., Zlotnik A., Siani M. A., Thompson D. A., Butcher E. C. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998 Jan 16;279(5349):381–384. doi: 10.1126/science.279.5349.381. [DOI] [PubMed] [Google Scholar]
  9. Chang K. C., Hammer D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys J. 1999 Mar;76(3):1280–1292. doi: 10.1016/S0006-3495(99)77291-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark R. A., Erickson H. P., Springer T. A. Tenascin supports lymphocyte rolling. J Cell Biol. 1997 May 5;137(3):755–765. doi: 10.1083/jcb.137.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dembo M., Torney D. C., Saxman K., Hammer D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55–83. doi: 10.1098/rspb.1988.0038. [DOI] [PubMed] [Google Scholar]
  13. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goetz D. J., el-Sabban M. E., Pauli B. U., Hammer D. A. Dynamics of neutrophil rolling over stimulated endothelium in vitro. Biophys J. 1994 Jun;66(6):2202–2209. doi: 10.1016/S0006-3495(94)81016-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hammer D. A., Lauffenburger D. A. A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J. 1987 Sep;52(3):475–487. doi: 10.1016/S0006-3495(87)83236-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones D. A., Abbassi O., McIntire L. V., McEver R. P., Smith C. W. P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys J. 1993 Oct;65(4):1560–1569. doi: 10.1016/S0006-3495(93)81195-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jones D. A., McIntire L. V., Smith C. W., Picker L. J. A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions. J Clin Invest. 1994 Dec;94(6):2443–2450. doi: 10.1172/JCI117612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaplanski G., Farnarier C., Tissot O., Pierres A., Benoliel A. M., Alessi M. C., Kaplanski S., Bongrand P. Granulocyte-endothelium initial adhesion. Analysis of transient binding events mediated by E-selectin in a laminar shear flow. Biophys J. 1993 Jun;64(6):1922–1933. doi: 10.1016/S0006-3495(93)81563-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuo S. C., Hammer D. A., Lauffenburger D. A. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys J. 1997 Jul;73(1):517–531. doi: 10.1016/S0006-3495(97)78090-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lawrence M. B., McIntire L. V., Eskin S. G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood. 1987 Nov;70(5):1284–1290. [PubMed] [Google Scholar]
  22. Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
  23. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  24. Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
  25. Ley K., Allietta M., Bullard D. C., Morgan S. Importance of E-selectin for firm leukocyte adhesion in vivo. Circ Res. 1998 Aug 10;83(3):287–294. doi: 10.1161/01.res.83.3.287. [DOI] [PubMed] [Google Scholar]
  26. Liu W., Ramachandran V., Kang J., Kishimoto T. K., Cummings R. D., McEver R. P. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J Biol Chem. 1998 Mar 20;273(12):7078–7087. doi: 10.1074/jbc.273.12.7078. [DOI] [PubMed] [Google Scholar]
  27. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  28. Phillips M. L., Nudelman E., Gaeta F. C., Perez M., Singhal A. K., Hakomori S., Paulson J. C. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science. 1990 Nov 23;250(4984):1130–1132. doi: 10.1126/science.1701274. [DOI] [PubMed] [Google Scholar]
  29. Polley M. J., Phillips M. L., Wayner E., Nudelman E., Singhal A. K., Hakomori S., Paulson J. C. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6224–6228. doi: 10.1073/pnas.88.14.6224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 1995 Oct 20;83(2):333–343. doi: 10.1016/0092-8674(95)90174-4. [DOI] [PubMed] [Google Scholar]
  31. Saterbak A., Kuo S. C., Lauffenburger D. A. Heterogeneity and probabilistic binding contributions to receptor-mediated cell detachment kinetics. Biophys J. 1993 Jul;65(1):243–252. doi: 10.1016/S0006-3495(93)81077-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sheikh S., Nash G. B. Continuous activation and deactivation of integrin CD11b/CD18 during de novo expression enables rolling neutrophils to immobilize on platelets. Blood. 1996 Jun 15;87(12):5040–5050. [PubMed] [Google Scholar]
  33. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  34. Swift D. G., Posner R. G., Hammer D. A. Kinetics of adhesion of IgE-sensitized rat basophilic leukemia cells to surface-immobilized antigen in Couette flow. Biophys J. 1998 Nov;75(5):2597–2611. doi: 10.1016/S0006-3495(98)77705-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tempelman L. A., Hammer D. A. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow. Biophys J. 1994 Apr;66(4):1231–1243. doi: 10.1016/S0006-3495(94)80907-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tözeren A., Kleinman H. K., Wu S., Mercurio A. M., Byers S. W. Integrin alpha 6 beta 4 mediates dynamic interactions with laminin. J Cell Sci. 1994 Nov;107(Pt 11):3153–3163. doi: 10.1242/jcs.107.11.3153. [DOI] [PubMed] [Google Scholar]
  37. Usami S., Chen H. H., Zhao Y., Chien S., Skalak R. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng. 1993;21(1):77–83. doi: 10.1007/BF02368167. [DOI] [PubMed] [Google Scholar]
  38. Varki A. Selectin ligands. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7390–7397. doi: 10.1073/pnas.91.16.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao Y., Chien S., Skalak R. A stochastic model of leukocyte rolling. Biophys J. 1995 Oct;69(4):1309–1320. doi: 10.1016/S0006-3495(95)79998-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES