Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1903–1914. doi: 10.1016/S0006-3495(00)76440-X

Diffusion and deformations of single hydra cells in cellular aggregates.

J P Rieu 1, A Upadhyaya 1, J A Glazier 1, N B Ouchi 1, Y Sawada 1
PMCID: PMC1301082  PMID: 11023896

Abstract

Cell motion within cellular aggregates consists of both random and coherent components. We used confocal microscopy to study the center of mass displacements and deformations of single endodermal Hydra cells in two kinds of cellular aggregates, ectodermal and endodermal. We first carefully characterize the center of mass displacements using standard statistical analysis. In both aggregates, cells perform a persistent random walk, with the diffusion constant smaller in the more cohesive endodermal aggregate. We show that a simple parametric method is able to describe cell deformations and relate them to displacements. These deformations are random, with their amplitude and direction uncorrelated with the center of mass motion. Unlike for an isolated cell on a substrate, the random forces exerted by the surrounding cells predominate over the deformation of the cell itself, causing the displacements of a cell within an aggregate.

Full Text

The Full Text of this article is available as a PDF (218.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong P. B. The control of cell motility during embryogenesis. Cancer Metastasis Rev. 1985;4(1):59–79. doi: 10.1007/BF00047737. [DOI] [PubMed] [Google Scholar]
  2. Budrene E. O., Berg H. C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature. 1995 Jul 6;376(6535):49–53. doi: 10.1038/376049a0. [DOI] [PubMed] [Google Scholar]
  3. Campbell R. D. Vital marking of single cells in developing tissues: India ink injection to trace tissue movements in hydra. J Cell Sci. 1973 Nov;13(3):651–661. doi: 10.1242/jcs.13.3.651. [DOI] [PubMed] [Google Scholar]
  4. DiMilla P. A., Stone J. A., Quinn J. A., Albelda S. M., Lauffenburger D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol. 1993 Aug;122(3):729–737. doi: 10.1083/jcb.122.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dipasquale A. Locomotory activity of epithelial cells in culture. Exp Cell Res. 1975 Aug;94(1):191–215. doi: 10.1016/0014-4827(75)90545-5. [DOI] [PubMed] [Google Scholar]
  6. Doolittle K. W., Reddy I., McNally J. G. 3D analysis of cell movement during normal and myosin-II-null cell morphogenesis in dictyostelium. Dev Biol. 1995 Jan;167(1):118–129. doi: 10.1006/dbio.1995.1011. [DOI] [PubMed] [Google Scholar]
  7. Dunn G. A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 1983;12:14–33. doi: 10.1007/978-3-0348-9352-7_1. [DOI] [PubMed] [Google Scholar]
  8. Fink R. D., Trinkaus J. P. Fundulus deep cells: directional migration in response to epithelial wounding. Dev Biol. 1988 Sep;129(1):179–190. doi: 10.1016/0012-1606(88)90172-8. [DOI] [PubMed] [Google Scholar]
  9. Forgacs G., Foty R. A., Shafrir Y., Steinberg M. S. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J. 1998 May;74(5):2227–2234. doi: 10.1016/S0006-3495(98)77932-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foty R. A., Pfleger C. M., Forgacs G., Steinberg M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 1996 May;122(5):1611–1620. doi: 10.1242/dev.122.5.1611. [DOI] [PubMed] [Google Scholar]
  11. Garrod D. R., Steinberg M. S. Cell locomotion within a contact-inhibited monolayer of chick embryonic liver parenchyma cells. J Cell Sci. 1975 Aug;18(3):405–425. doi: 10.1242/jcs.18.3.405. [DOI] [PubMed] [Google Scholar]
  12. Germain F., Doisy A., Ronot X., Tracqui P. Characterization of cell deformation and migration using a parametric estimation of image motion. IEEE Trans Biomed Eng. 1999 May;46(5):584–600. doi: 10.1109/10.759059. [DOI] [PubMed] [Google Scholar]
  13. Gierer A., Berking S., Bode H., David C. N., Flick K., Hansmann G., Schaller H., Trenkner E. Regeneration of hydra from reaggregated cells. Nat New Biol. 1972 Sep 27;239(91):98–101. doi: 10.1038/newbio239098a0. [DOI] [PubMed] [Google Scholar]
  14. Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett. 1992 Sep 28;69(13):2013–2016. doi: 10.1103/PhysRevLett.69.2013. [DOI] [PubMed] [Google Scholar]
  15. Grimstad I. A. Direct evidence that cancer cell locomotion contributes importantly to invasion. Exp Cell Res. 1987 Dec;173(2):515–523. doi: 10.1016/0014-4827(87)90291-6. [DOI] [PubMed] [Google Scholar]
  16. Hinz B., Alt W., Johnen C., Herzog V., Kaiser H. W. Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp Cell Res. 1999 Aug 25;251(1):234–243. doi: 10.1006/excr.1999.4541. [DOI] [PubMed] [Google Scholar]
  17. Keller R. E., Trinkaus J. P. Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev Biol. 1987 Mar;120(1):12–24. doi: 10.1016/0012-1606(87)90099-6. [DOI] [PubMed] [Google Scholar]
  18. Killich T., Plath P. J., Wei X., Bultmann H., Rensing L., Vicker M. G. The locomotion, shape and pseudopodial dynamics of unstimulated Dictyostelium cells are not random. J Cell Sci. 1993 Dec;106(Pt 4):1005–1013. doi: 10.1242/jcs.106.4.1005. [DOI] [PubMed] [Google Scholar]
  19. Kishimoto Y., Murate M., Sugiyama T. Hydra regeneration from recombined ectodermal and endodermal tissue. I. Epibolic ectodermal spreading is driven by cell intercalation. J Cell Sci. 1996 Apr;109(Pt 4):763–772. doi: 10.1242/jcs.109.4.763. [DOI] [PubMed] [Google Scholar]
  20. Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
  21. Loomis W. F. Lateral inhibition and pattern formation in Dictyostelium. Curr Top Dev Biol. 1993;28:1–46. doi: 10.1016/s0070-2153(08)60208-2. [DOI] [PubMed] [Google Scholar]
  22. Mombach JC, Glazier JA, Raphael RC, Zajac M. Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett. 1995 Sep 11;75(11):2244–2247. doi: 10.1103/PhysRevLett.75.2244. [DOI] [PubMed] [Google Scholar]
  23. Mombach JC, Glazier JA. Single cell motion in aggregates of embryonic cells. Phys Rev Lett. 1996 Apr 15;76(16):3032–3035. doi: 10.1103/PhysRevLett.76.3032. [DOI] [PubMed] [Google Scholar]
  24. Odell G. M., Oster G., Alberch P., Burnside B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol. 1981 Jul 30;85(2):446–462. doi: 10.1016/0012-1606(81)90276-1. [DOI] [PubMed] [Google Scholar]
  25. Phillips H. M., Steinberg M. S. Embryonic tissues as elasticoviscous liquids. I. Rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci. 1978 Apr;30:1–20. doi: 10.1242/jcs.30.1.1. [DOI] [PubMed] [Google Scholar]
  26. Rietdorf J., Siegert F., Weijer C. J. Analysis of optical density wave propagation and cell movement during mound formation in Dictyostelium discoideum. Dev Biol. 1996 Aug 1;177(2):427–438. doi: 10.1006/dbio.1996.0175. [DOI] [PubMed] [Google Scholar]
  27. Sato-Maeda M., Uchida M., Graner F., Tashiro H. Quantitative evaluation of tissue-specific cell adhesion at the level of a single cell pair. Dev Biol. 1994 Mar;162(1):77–84. doi: 10.1006/dbio.1994.1068. [DOI] [PubMed] [Google Scholar]
  28. Schindl M., Wallraff E., Deubzer B., Witke W., Gerisch G., Sackmann E. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy. Biophys J. 1995 Mar;68(3):1177–1190. doi: 10.1016/S0006-3495(95)80294-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TRINKAUS J. P., LENTZ J. P. DIRECT OBSERVATION OF TYPE-SPECIFIC SEGREGATION IN MIXED CELL AGGREGATES. Dev Biol. 1964 Feb;9:115–136. doi: 10.1016/0012-1606(64)90017-x. [DOI] [PubMed] [Google Scholar]
  30. Technau U., Holstein T. W. Cell sorting during the regeneration of Hydra from reaggregated cells. Dev Biol. 1992 May;151(1):117–127. doi: 10.1016/0012-1606(92)90219-7. [DOI] [PubMed] [Google Scholar]
  31. Trinkaus J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol. 1973 Jan;30(1):69–103. doi: 10.1016/0012-1606(73)90049-3. [DOI] [PubMed] [Google Scholar]
  32. Trinkaus J. P., Trinkaus M., Fink R. D. On the convergent cell movements of gastrulation in Fundulus. J Exp Zool. 1992 Jan 1;261(1):40–61. doi: 10.1002/jez.1402610107. [DOI] [PubMed] [Google Scholar]
  33. Tsallis C, Bukman DJ. Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Sep;54(3):R2197–R2200. doi: 10.1103/physreve.54.r2197. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES