Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1915–1927. doi: 10.1016/S0006-3495(00)76441-1

A direct optimization approach to hidden Markov modeling for single channel kinetics.

F Qin 1, A Auerbach 1, F Sachs 1
PMCID: PMC1301083  PMID: 11023897

Abstract

Hidden Markov modeling (HMM) provides an effective approach for modeling single channel kinetics. Standard HMM is based on Baum's reestimation. As applied to single channel currents, the algorithm has the inability to optimize the rate constants directly. We present here an alternative approach by considering the problem as a general optimization problem. The quasi-Newton method is used for searching the likelihood surface. The analytical derivatives of the likelihood function are derived, thereby maximizing the efficiency of the optimization. Because the rate constants are optimized directly, the approach has advantages such as the allowance for model constraints and the ability to simultaneously fit multiple data sets obtained at different experimental conditions. Numerical examples are presented to illustrate the performance of the algorithm. Comparisons with Baum's reestimation suggest that the approach has a superior convergence speed when the likelihood surface is poorly defined due to, for example, a low signal-to-noise ratio or the aggregation of multiple states having identical conductances.

Full Text

The Full Text of this article is available as a PDF (141.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blunck R., Kirst U., Riessner T., Hansen U. How powerful is the dwell-time analysis of multichannel records? J Membr Biol. 1998 Sep 1;165(1):19–35. doi: 10.1007/s002329900417. [DOI] [PubMed] [Google Scholar]
  2. Chung S. H., Krishnamurthy V., Moore J. B. Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences. Philos Trans R Soc Lond B Biol Sci. 1991 Dec 30;334(1271):357–384. doi: 10.1098/rstb.1991.0122. [DOI] [PubMed] [Google Scholar]
  3. Chung S. H., Moore J. B., Xia L. G., Premkumar L. S., Gage P. W. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos Trans R Soc Lond B Biol Sci. 1990 Sep 29;329(1254):265–285. doi: 10.1098/rstb.1990.0170. [DOI] [PubMed] [Google Scholar]
  4. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  5. Fredkin D. R., Rice J. A. Maximum likelihood estimation and identification directly from single-channel recordings. Proc Biol Sci. 1992 Aug 22;249(1325):125–132. doi: 10.1098/rspb.1992.0094. [DOI] [PubMed] [Google Scholar]
  6. Horn R., Lange K. Estimating kinetic constants from single channel data. Biophys J. 1983 Aug;43(2):207–223. doi: 10.1016/S0006-3495(83)84341-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kienker P. Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B Biol Sci. 1989 Apr 22;236(1284):269–309. doi: 10.1098/rspb.1989.0024. [DOI] [PubMed] [Google Scholar]
  8. Magleby K. L., Weiss D. S. Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise. Biophys J. 1990 Dec;58(6):1411–1426. doi: 10.1016/S0006-3495(90)82487-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Magleby K. L., Weiss D. S. Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times. Proc Biol Sci. 1990 Sep 22;241(1302):220–228. doi: 10.1098/rspb.1990.0089. [DOI] [PubMed] [Google Scholar]
  10. McManus O. B., Blatz A. L., Magleby K. L. Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pflugers Arch. 1987 Nov;410(4-5):530–553. doi: 10.1007/BF00586537. [DOI] [PubMed] [Google Scholar]
  11. Qin F., Auerbach A., Sachs F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J. 1996 Jan;70(1):264–280. doi: 10.1016/S0006-3495(96)79568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Qin F., Auerbach A., Sachs F. Maximum likelihood estimation of aggregated Markov processes. Proc Biol Sci. 1997 Mar 22;264(1380):375–383. doi: 10.1098/rspb.1997.0054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roux B., Sauvé R. A general solution to the time interval omission problem applied to single channel analysis. Biophys J. 1985 Jul;48(1):149–158. doi: 10.1016/S0006-3495(85)83768-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Salamone F. N., Zhou M., Auerbach A. A re-examination of adult mouse nicotinic acetylcholine receptor channel activation kinetics. J Physiol. 1999 Apr 15;516(Pt 2):315–330. doi: 10.1111/j.1469-7793.1999.0315v.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES