Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):1954–1966. doi: 10.1016/S0006-3495(00)76444-7

Properties of gap junction channels formed by Cx46 alone and in combination with Cx50.

M G Hopperstad 1, M Srinivas 1, D C Spray 1
PMCID: PMC1301086  PMID: 11023900

Abstract

Gap junctions formed of connexin46 (Cx46) and connexin50 (Cx50) in lens fiber cells are crucial for maintaining lens transparency. We determined the functional properties of homotypic Cx46, heterotypic Cx46/Cx50, and heteromeric Cx46/Cx50 channels in a communication-deficient neuroblastoma (N2A) cell line, using dual whole-cell recordings. N2A cultures were stably and/or transiently transfected with Cx46, Cx50, and green fluorescent protein (EGFP). The macroscopic voltage sensitivity of homotypic Cx46 conformed to the two-state model (Boltzmann parameters: G(min) = 0.11, V(0) = +/- 48.1 mV, gating charge = 2). Cx46 single channels showed a main-state conductance of 140 +/- 8 pS and multiple subconductance states ranging from < or =10 pS to 60 pS. Conservation of homotypic properties in heterotypic Cx46/Cx50 cell pairs allowed the determination of a positive relative gating polarity for the dominant gating mechanisms in Cx46 and Cx50. Observed gating properties were consistent with a second gating mechanism in Cx46 connexons. Moreover, rectification was observed in heterotypic cell pairs. Some cell pairs in cultures simultaneously transfected with Cx46 and Cx50 exhibited junctional properties not observed in other preparations, suggesting the formation of heteromeric channels. We conclude that different combinations of Cx46 and Cx50 within gap junction channels lead to unique biophysical properties.

Full Text

The Full Text of this article is available as a PDF (370.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. V., Barrio L. C., Bargiello T. A., Spray D. C., Hertzberg E., Sáez J. C. Gap junctions: new tools, new answers, new questions. Neuron. 1991 Mar;6(3):305–320. doi: 10.1016/0896-6273(91)90241-q. [DOI] [PubMed] [Google Scholar]
  2. Brink P. R., Cronin K., Banach K., Peterson E., Westphale E. M., Seul K. H., Ramanan S. V., Beyer E. C. Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. Am J Physiol. 1997 Oct;273(4 Pt 1):C1386–C1396. doi: 10.1152/ajpcell.1997.273.4.C1386. [DOI] [PubMed] [Google Scholar]
  3. Bruzzone R., White T. W., Paul D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996 May 15;238(1):1–27. doi: 10.1111/j.1432-1033.1996.0001q.x. [DOI] [PubMed] [Google Scholar]
  4. Bukauskas F. F., Elfgang C., Willecke K., Weingart R. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J. 1995 Jun;68(6):2289–2298. doi: 10.1016/S0006-3495(95)80411-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bukauskas F. F., Weingart R. Voltage-dependent gating of single gap junction channels in an insect cell line. Biophys J. 1994 Aug;67(2):613–625. doi: 10.1016/S0006-3495(94)80521-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burt J. M., Spray D. C. Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res. 1989 Sep;65(3):829–837. doi: 10.1161/01.res.65.3.829. [DOI] [PubMed] [Google Scholar]
  7. Chen D., Lear J., Eisenberg B. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J. 1997 Jan;72(1):97–116. doi: 10.1016/S0006-3495(97)78650-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dermietzel R., Hertberg E. L., Kessler J. A., Spray D. C. Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci. 1991 May;11(5):1421–1432. doi: 10.1523/JNEUROSCI.11-05-01421.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ebihara L., Steiner E. Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol. 1993 Jul;102(1):59–74. doi: 10.1085/jgp.102.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ebihara L., Xu X., Oberti C., Beyer E. C., Berthoud V. M. Co-expression of lens fiber connexins modifies hemi-gap-junctional channel behavior. Biophys J. 1999 Jan;76(1 Pt 1):198–206. doi: 10.1016/S0006-3495(99)77189-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elenes S., Rubart M., Moreno A. P. Junctional communication between isolated pairs of canine atrial cells is mediated by homogeneous and heterogeneous gap junction channels. J Cardiovasc Electrophysiol. 1999 Jul;10(7):990–1004. doi: 10.1111/j.1540-8167.1999.tb01270.x. [DOI] [PubMed] [Google Scholar]
  12. Gong X., Baldo G. J., Kumar N. M., Gilula N. B., Mathias R. T. Gap junctional coupling in lenses lacking alpha3 connexin. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15303–15308. doi: 10.1073/pnas.95.26.15303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goodenough D. A. The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol. 1992 Feb;3(1):49–58. doi: 10.1016/s1043-4682(10)80007-8. [DOI] [PubMed] [Google Scholar]
  14. He D. S., Jiang J. X., Taffet S. M., Burt J. M. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6495–6500. doi: 10.1073/pnas.96.11.6495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jiang J. X., Goodenough D. A. Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1287–1291. doi: 10.1073/pnas.93.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Konig N., Zampighi G. A. Purification of bovine lens cell-to-cell channels composed of connexin44 and connexin50. J Cell Sci. 1995 Sep;108(Pt 9):3091–3098. doi: 10.1242/jcs.108.9.3091. [DOI] [PubMed] [Google Scholar]
  17. Li X., Simard J. M. Multiple connexins form gap junction channels in rat basilar artery smooth muscle cells. Circ Res. 1999 Jun 11;84(11):1277–1284. doi: 10.1161/01.res.84.11.1277. [DOI] [PubMed] [Google Scholar]
  18. Mackay D., Ionides A., Kibar Z., Rouleau G., Berry V., Moore A., Shiels A., Bhattacharya S. Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet. 1999 May;64(5):1357–1364. doi: 10.1086/302383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mathias R. T., Rae J. L., Baldo G. J. Physiological properties of the normal lens. Physiol Rev. 1997 Jan;77(1):21–50. doi: 10.1152/physrev.1997.77.1.21. [DOI] [PubMed] [Google Scholar]
  20. Moreno A. P., Rook M. B., Fishman G. I., Spray D. C. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys J. 1994 Jul;67(1):113–119. doi: 10.1016/S0006-3495(94)80460-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oh S., Rubin J. B., Bennett M. V., Verselis V. K., Bargiello T. A. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol. 1999 Sep;114(3):339–364. doi: 10.1085/jgp.114.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paul D. L., Ebihara L., Takemoto L. J., Swenson K. I., Goodenough D. A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol. 1991 Nov;115(4):1077–1089. doi: 10.1083/jcb.115.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pfahnl A., Dahl G. Localization of a voltage gate in connexin46 gap junction hemichannels. Biophys J. 1998 Nov;75(5):2323–2331. doi: 10.1016/S0006-3495(98)77676-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shiels A., Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet. 1998 Mar;62(3):526–532. doi: 10.1086/301762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Srinivas M., Costa M., Gao Y., Fort A., Fishman G. I., Spray D. C. Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol. 1999 Jun 15;517(Pt 3):673–689. doi: 10.1111/j.1469-7793.1999.0673s.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suchyna T. M., Nitsche J. M., Chilton M., Harris A. L., Veenstra R. D., Nicholson B. J. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J. 1999 Dec;77(6):2968–2987. doi: 10.1016/S0006-3495(99)77129-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Trexler E. B., Bennett M. V., Bargiello T. A., Verselis V. K. Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5836–5841. doi: 10.1073/pnas.93.12.5836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Unger V. M., Kumar N. M., Gilula N. B., Yeager M. Three-dimensional structure of a recombinant gap junction membrane channel. Science. 1999 Feb 19;283(5405):1176–1180. doi: 10.1126/science.283.5405.1176. [DOI] [PubMed] [Google Scholar]
  29. Veenstra R. D., DeHaan R. L. Cardiac gap junction channel activity in embryonic chick ventricle cells. Am J Physiol. 1988 Jan;254(1 Pt 2):H170–H180. doi: 10.1152/ajpheart.1988.254.1.H170. [DOI] [PubMed] [Google Scholar]
  30. Verselis V. K., Ginter C. S., Bargiello T. A. Opposite voltage gating polarities of two closely related connexins. Nature. 1994 Mar 24;368(6469):348–351. doi: 10.1038/368348a0. [DOI] [PubMed] [Google Scholar]
  31. White T. W., Bruzzone R., Goodenough D. A., Paul D. L. Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell. 1992 Jul;3(7):711–720. doi: 10.1091/mbc.3.7.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White T. W., Bruzzone R., Goodenough D. A., Paul D. L. Voltage gating of connexins. Nature. 1994 Sep 15;371(6494):208–209. doi: 10.1038/371208a0. [DOI] [PubMed] [Google Scholar]
  33. White T. W., Bruzzone R., Wolfram S., Paul D. L., Goodenough D. A. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol. 1994 May;125(4):879–892. doi: 10.1083/jcb.125.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. White T. W., Goodenough D. A., Paul D. L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol. 1998 Nov 2;143(3):815–825. doi: 10.1083/jcb.143.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilders R., Jongsma H. J. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys J. 1992 Oct;63(4):942–953. doi: 10.1016/S0006-3495(92)81664-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES