Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2002–2009. doi: 10.1016/S0006-3495(00)76448-4

Crystallization of antimicrobial pores in membranes: magainin and protegrin.

L Yang 1, T M Weiss 1, R I Lehrer 1, H W Huang 1
PMCID: PMC1301090  PMID: 11023904

Abstract

Membrane pores spontaneously formed by antimicrobial peptides in membranes were crystallized for the first time by manipulating the sample hydration and temperature. Neutron diffraction shows that magainins and protegrins form stable pores in fully hydrated fluid membranes. At lower hydration levels or low temperature, the membrane multilayers crystallize. In one crystalline phase, the pores in each bilayer arrange in a regular hexagonal array and the bilayers are stacked into a hexagonal ABC lattice, corresponding to the cubic close-packed structure of spheres. In another crystalline phase, the bilayers are modulated into the rippled multilamellae, corresponding to a 2D monoclinic lattice. The phase diagrams are described. Crystallization of the membrane pores provides possibilities for diffraction studies that might provide useful information on the pore structures.

Full Text

The Full Text of this article is available as a PDF (405.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aumelas A., Mangoni M., Roumestand C., Chiche L., Despaux E., Grassy G., Calas B., Chavanieu A. Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem. 1996 May 1;237(3):575–583. doi: 10.1111/j.1432-1033.1996.0575p.x. [DOI] [PubMed] [Google Scholar]
  2. Bessalle R., Kapitkovsky A., Gorea A., Shalit I., Fridkin M. All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett. 1990 Nov 12;274(1-2):151–155. doi: 10.1016/0014-5793(90)81351-n. [DOI] [PubMed] [Google Scholar]
  3. Blaurock A. E. Structure of the nerve myelin membrane: proof of the low-resolution profile. J Mol Biol. 1971 Feb 28;56(1):35–52. doi: 10.1016/0022-2836(71)90082-9. [DOI] [PubMed] [Google Scholar]
  4. Cho Y., Turner J. S., Dinh N. N., Lehrer R. I. Activity of protegrins against yeast-phase Candida albicans. Infect Immun. 1998 Jun;66(6):2486–2493. doi: 10.1128/iai.66.6.2486-2493.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cruciani R. A., Barker J. L., Zasloff M., Chen H. C., Colamonici O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3792–3796. doi: 10.1073/pnas.88.9.3792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duclohier H., Molle G., Spach G. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers. Biophys J. 1989 Nov;56(5):1017–1021. doi: 10.1016/S0006-3495(89)82746-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fahrner R. L., Dieckmann T., Harwig S. S., Lehrer R. I., Eisenberg D., Feigon J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol. 1996 Jul;3(7):543–550. doi: 10.1016/s1074-5521(96)90145-3. [DOI] [PubMed] [Google Scholar]
  9. Ganz T., Lehrer R. I. Antimicrobial peptides of vertebrates. Curr Opin Immunol. 1998 Feb;10(1):41–44. doi: 10.1016/s0952-7915(98)80029-0. [DOI] [PubMed] [Google Scholar]
  10. Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Feb;76(2):937–945. doi: 10.1016/S0006-3495(99)77257-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harwig S. S., Waring A., Yang H. J., Cho Y., Tan L., Lehrer R. I. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem. 1996 Sep 1;240(2):352–357. doi: 10.1111/j.1432-1033.1996.0352h.x. [DOI] [PubMed] [Google Scholar]
  12. He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heller W. T., He K., Ludtke S. J., Harroun T. A., Huang H. W. Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J. 1997 Jul;73(1):239–244. doi: 10.1016/S0006-3495(97)78064-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heller W. T., Waring A. J., Lehrer R. I., Harroun T. A., Weiss T. M., Yang L., Huang H. W. Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry. 2000 Jan 11;39(1):139–145. doi: 10.1021/bi991892m. [DOI] [PubMed] [Google Scholar]
  16. Heller W. T., Waring A. J., Lehrer R. I., Huang H. W. Multiple states of beta-sheet peptide protegrin in lipid bilayers. Biochemistry. 1998 Dec 8;37(49):17331–17338. doi: 10.1021/bi981314q. [DOI] [PubMed] [Google Scholar]
  17. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  18. Huang H. W. Action of antimicrobial peptides: two-state model. Biochemistry. 2000 Jul 25;39(29):8347–8352. doi: 10.1021/bi000946l. [DOI] [PubMed] [Google Scholar]
  19. Huang H. W., Olah G. A. Uniformly oriented gramicidin channels embedded in thick monodomain lecithin multilayers. Biophys J. 1987 Jun;51(6):989–992. doi: 10.1016/S0006-3495(87)83427-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kokryakov V. N., Harwig S. S., Panyutich E. A., Shevchenko A. A., Aleshina G. M., Shamova O. V., Korneva H. A., Lehrer R. I. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993 Jul 26;327(2):231–236. doi: 10.1016/0014-5793(93)80175-t. [DOI] [PubMed] [Google Scholar]
  22. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  23. Ludtke S. J., He K., Wu Y., Huang H. W. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta. 1994 Feb 23;1190(1):181–184. doi: 10.1016/0005-2736(94)90050-7. [DOI] [PubMed] [Google Scholar]
  24. Ludtke S., He K., Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. doi: 10.1021/bi00051a026. [DOI] [PubMed] [Google Scholar]
  25. Ludtke S., He K., Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. doi: 10.1021/bi00051a026. [DOI] [PubMed] [Google Scholar]
  26. Matsuzaki K., Harada M., Handa T., Funakoshi S., Fujii N., Yajima H., Miyajima K. Magainin 1-induced leakage of entrapped calcein out of negatively-charged lipid vesicles. Biochim Biophys Acta. 1989 May 19;981(1):130–134. doi: 10.1016/0005-2736(89)90090-4. [DOI] [PubMed] [Google Scholar]
  27. Powers L., Pershan P. S. Monodomain samples of dipalmitoyl phosphatidylcholine with varying concentrations of water and other ingredients. Biophys J. 1977 Nov;20(2):137–152. doi: 10.1016/S0006-3495(77)85540-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Qu X. D., Harwig S. S., Oren A. M., Shafer W. M., Lehrer R. I. Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun. 1996 Apr;64(4):1240–1245. doi: 10.1128/iai.64.4.1240-1245.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Qu X. D., Harwig S. S., Shafer W. M., Lehrer R. I. Protegrin structure and activity against Neisseria gonorrhoeae. Infect Immun. 1997 Feb;65(2):636–639. doi: 10.1128/iai.65.2.636-639.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sokolov Y., Mirzabekov T., Martin D. W., Lehrer R. I., Kagan B. L. Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):23–29. doi: 10.1016/s0005-2736(99)00086-3. [DOI] [PubMed] [Google Scholar]
  31. Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
  32. Tamamura H., Murakami T., Horiuchi S., Sugihara K., Otaka A., Takada W., Ibuka T., Waki M., Yamamoto N., Fujii N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull (Tokyo) 1995 May;43(5):853–858. doi: 10.1248/cpb.43.853. [DOI] [PubMed] [Google Scholar]
  33. Torbet J., Wilkins M. H. X-ray diffraction studies of lecithin bilayers. J Theor Biol. 1976 Oct 21;62(2):447–458. doi: 10.1016/0022-5193(76)90129-6. [DOI] [PubMed] [Google Scholar]
  34. Wack DC, Webb WW. Synchrotron x-ray study of the modulated lamellar phase P beta ' in the lecithin-water system. Phys Rev A Gen Phys. 1989 Sep 1;40(5):2712–2730. doi: 10.1103/physreva.40.2712. [DOI] [PubMed] [Google Scholar]
  35. Wade D., Boman A., Wåhlin B., Drain C. M., Andreu D., Boman H. G., Merrifield R. B. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761–4765. doi: 10.1073/pnas.87.12.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams R. W., Starman R., Taylor K. M., Gable K., Beeler T., Zasloff M., Covell D. Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. Biochemistry. 1990 May 8;29(18):4490–4496. doi: 10.1021/bi00470a031. [DOI] [PubMed] [Google Scholar]
  37. Wu Y., He K., Ludtke S. J., Huang H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. doi: 10.1016/S0006-3495(95)80418-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu Y., Huang H. W., Olah G. A. Method of oriented circular dichroism. Biophys J. 1990 Apr;57(4):797–806. doi: 10.1016/S0006-3495(90)82599-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yang D., Chertov O., Bykovskaia S. N., Chen Q., Buffo M. J., Shogan J., Anderson M., Schröder J. M., Wang J. M., Howard O. M. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999 Oct 15;286(5439):525–528. doi: 10.1126/science.286.5439.525. [DOI] [PubMed] [Google Scholar]
  40. Yang L., Harroun T. A., Heller W. T., Weiss T. M., Huang H. W. Neutron off-plane scattering of aligned membranes. I. Method Of measurement. Biophys J. 1998 Aug;75(2):641–645. doi: 10.1016/S0006-3495(98)77554-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yang L., Weiss T. M., Harroun T. A., Heller W. T., Huang H. W. Supramolecular structures of peptide assemblies in membranes by neutron off-plane scattering: method of analysis. Biophys J. 1999 Nov;77(5):2648–2656. doi: 10.1016/S0006-3495(99)77099-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yasin B., Lehrer R. I., Harwig S. S., Wagar E. A. Protegrins: structural requirements for inactivating elementary bodies of Chlamydia trachomatis. Infect Immun. 1996 Nov;64(11):4863–4866. doi: 10.1128/iai.64.11.4863-4866.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES