Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2010–2023. doi: 10.1016/S0006-3495(00)76449-6

Differential effects of surfactant protein A on regional organization of phospholipid monolayers containing surfactant protein B or C.

S G Taneva 1, K M Keough 1
PMCID: PMC1301091  PMID: 11023905

Abstract

Epifluorescence microscopy combined with a surface balance was used to study monolayers of dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (PG) (8:2, mol/mol) plus 17 wt % SP-B or SP-C spread on subphases containing SP-A in the presence or absence of 5 mM Ca(2+). Independently of the presence of Ca(2+) in the subphase, SP-A at a bulk concentration of 0.68 microg/ml adsorbed into the spread monolayers and caused an increase in the molecular areas in the films. Films of DPPC/PG formed on SP-A solutions showed a pressure-dependent coexistence of liquid-condensed (LC) and liquid-expanded (LE) phases. Apart from these surface phases, a probe-excluding phase, likely enriched in SP-A, was seen in the films between 7 mN/m < or = pi < or = 20 mN/m. In monolayers of SP-B/(DPPC/PG) spread on SP-A, regardless of the presence of calcium ions, large clusters of a probe-excluding phase, different from probe-excluding lipid LC phase, appeared and segregated from the LE phase at near-zero surface pressures and coexisted with the conventional LE and LC phases up to approximately 35 mN/m. Varying the levels of either SP-A or SP-B in films of SP-B/SP-A/(DPPC/PG) revealed that the formation of the probe-excluding clusters distinctive for the quaternary films was influenced by the two proteins. Concanavalin A in the subphase could not replace SP-A in its ability to modulate the textures of films of SP-B/(DPPC/PG). In films of SP-C/SP-A/(DPPC/PG), in the absence of calcium, regions consisting of a probe-excluding phase, likely enriched in SP-A, were detected at surface pressures between 2 mN/m and 20 mN/m in addition to the lipid LE and LC phases. Ca(2+) in the subphase appeared to disperse this phase into tiny probe-excluding particles, likely comprising Ca(2+)-aggregated SP-A. Despite their strikingly different morphologies, the films of DPPC/PG that contained combinations of SP-B/SP-A or SP-C/SP-A displayed similar distributions of LC and LE phases with LC regions occupying a maximum of 20% of the total monolayer area. Combining SP-A and SP-B reorganized the morphology of monolayers composed of DPPC and PG in a Ca(2+)-independent manner that led to the formation of a separate potentially protein-rich phase in the films.

Full Text

The Full Text of this article is available as a PDF (940.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Benson B. J., Williams M. C., Sueishi K., Goerke J., Sargeant T. Role of calcium ions the structure and function of pulmonary surfactant. Biochim Biophys Acta. 1984 Mar 27;793(1):18–27. doi: 10.1016/0005-2760(84)90048-1. [DOI] [PubMed] [Google Scholar]
  3. CLEMENTS J. A., HUSTEAD R. F., JOHNSON R. P., GRIBETZ I. Pulmonary surface tension and alveolar stability. J Appl Physiol. 1961 May;16:444–450. doi: 10.1152/jappl.1961.16.3.444. [DOI] [PubMed] [Google Scholar]
  4. Casals C., Miguel E., Perez-Gil J. Tryptophan fluorescence study on the interaction of pulmonary surfactant protein A with phospholipid vesicles. Biochem J. 1993 Dec 15;296(Pt 3):585–593. doi: 10.1042/bj2960585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curstedt T., Johansson J., Barros-Söderling J., Robertson B., Nilsson G., Westberg M., Jörnvall H. Low-molecular-mass surfactant protein type 1. The primary structure of a hydrophobic 8-kDa polypeptide with eight half-cystine residues. Eur J Biochem. 1988 Mar 15;172(3):521–525. doi: 10.1111/j.1432-1033.1988.tb13918.x. [DOI] [PubMed] [Google Scholar]
  6. Curstedt T., Johansson J., Persson P., Eklund A., Robertson B., Löwenadler B., Jörnvall H. Hydrophobic surfactant-associated polypeptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2985–2989. doi: 10.1073/pnas.87.8.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. El Mashak E. M., Lakhdar-Ghazal F., Tocanne J. F. Effect of pH, mono- and divalent cations on the mixing of phosphatidylglycerol with phosphatidylcholine. A monolayer (pi, delta V) and fluorescence study. Biochim Biophys Acta. 1982 Jun 14;688(2):465–474. doi: 10.1016/0005-2736(82)90358-3. [DOI] [PubMed] [Google Scholar]
  8. Gil J., Reiss O. K. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J Cell Biol. 1973 Jul;58(1):152–171. doi: 10.1083/jcb.58.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
  10. Haagsman H. P., Sargeant T., Hauschka P. V., Benson B. J., Hawgood S. Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry. 1990 Sep 25;29(38):8894–8900. doi: 10.1021/bi00490a003. [DOI] [PubMed] [Google Scholar]
  11. Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hawgood S., Efrati H., Schilling J., Benson B. J. Chemical characterization of lung surfactant apoproteins: amino acid composition, N-terminal sequence and enzymic digestion. Biochem Soc Trans. 1985 Dec;13(6):1092–1096. doi: 10.1042/bst0131092. [DOI] [PubMed] [Google Scholar]
  13. Keough K. M., Kariel N. Differential scanning calorimetric studies of aqueous dispersions of phosphatidylcholines containing two polyenoic chains. Biochim Biophys Acta. 1987 Aug 7;902(1):11–18. doi: 10.1016/0005-2736(87)90130-1. [DOI] [PubMed] [Google Scholar]
  14. King R. J., Carmichael M. C., Horowitz P. M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem. 1983 Sep 10;258(17):10672–10680. [PubMed] [Google Scholar]
  15. King R. J., Clements J. A. Surface active materials from dog lung. I. Method of isolation. Am J Physiol. 1972 Sep;223(3):707–714. doi: 10.1152/ajplegacy.1972.223.3.707. [DOI] [PubMed] [Google Scholar]
  16. King R. J., Simon D., Horowitz P. M. Aspects of secondary and quaternary structure of surfactant protein A from canine lung. Biochim Biophys Acta. 1989 Feb 20;1001(3):294–301. doi: 10.1016/0005-2760(89)90114-8. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Nag K., Boland C., Rich N., Keough K. M. Epifluorescence microscopic observation of monolayers of dipalmitoylphosphatidylcholine: dependence of domain size on compression rates. Biochim Biophys Acta. 1991 Sep 30;1068(2):157–160. doi: 10.1016/0005-2736(91)90204-l. [DOI] [PubMed] [Google Scholar]
  19. Nag K., Taneva S. G., Perez-Gil J., Cruz A., Keough K. M. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films. Biophys J. 1997 Jun;72(6):2638–2650. doi: 10.1016/S0006-3495(97)78907-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Palaniyar N., Ridsdale R. A., Holterman C. E., Inchley K., Possmayer F., Harauz G. Structural changes of surfactant protein A induced by cations reorient the protein on lipid bilayers. J Struct Biol. 1998;122(3):297–310. doi: 10.1006/jsbi.1998.4004. [DOI] [PubMed] [Google Scholar]
  21. Poulain F. R., Allen L., Williams M. C., Hamilton R. L., Hawgood S. Effects of surfactant apolipoproteins on liposome structure: implications for tubular myelin formation. Am J Physiol. 1992 Jun;262(6 Pt 1):L730–L739. doi: 10.1152/ajplung.1992.262.6.L730. [DOI] [PubMed] [Google Scholar]
  22. Poulain F. R., Nir S., Hawgood S. Kinetics of phospholipid membrane fusion induced by surfactant apoproteins A and B. Biochim Biophys Acta. 1996 Jan 31;1278(2):169–175. doi: 10.1016/0005-2736(95)00212-x. [DOI] [PubMed] [Google Scholar]
  23. Putman E., Creuwels L. A., van Golde L. M., Haagsman H. P. Surface properties, morphology and protein composition of pulmonary surfactant subtypes. Biochem J. 1996 Dec 1;320(Pt 2):599–605. doi: 10.1042/bj3200599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pérez-Gil J., Nag K., Taneva S., Keough K. M. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers. Biophys J. 1992 Jul;63(1):197–204. doi: 10.1016/S0006-3495(92)81582-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ruano M. L., Miguel E., Perez-Gil J., Casals C. Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A. Biochem J. 1996 Jan 15;313(Pt 2):683–689. doi: 10.1042/bj3130683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ruano M. L., Nag K., Worthman L. A., Casals C., Pérez-Gil J., Keough K. M. Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol. Biophys J. 1998 Mar;74(3):1101–1109. doi: 10.1016/s0006-3495(98)77828-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sarin V. K., Gupta S., Leung T. K., Taylor V. E., Ohning B. L., Whitsett J. A., Fox J. L. Biophysical and biological activity of a synthetic 8.7-kDa hydrophobic pulmonary surfactant protein SP-B. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2633–2637. doi: 10.1073/pnas.87.7.2633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sueishi K., Benson B. J. Isolation of a major apolipoprotein of canine and murine pulmonary surfactant. Biochemical and immunochemical characteristics. Biochim Biophys Acta. 1981 Sep 24;665(3):442–453. doi: 10.1016/0005-2760(81)90257-5. [DOI] [PubMed] [Google Scholar]
  29. Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
  30. Taneva S. G., Keough K. M. Calcium ions and interactions of pulmonary surfactant proteins SP-B and SP-C with phospholipids in spread monolayers at the air/water interface. Biochim Biophys Acta. 1995 May 24;1236(1):185–195. doi: 10.1016/0005-2736(95)00046-6. [DOI] [PubMed] [Google Scholar]
  31. Taneva S. G., Keough K. M. Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine. Biochemistry. 1994 Dec 13;33(49):14660–14670. doi: 10.1021/bi00253a003. [DOI] [PubMed] [Google Scholar]
  32. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J. 1994 Apr;66(4):1158–1166. doi: 10.1016/S0006-3495(94)80897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taneva S., McEachren T., Stewart J., Keough K. M. Pulmonary surfactant protein SP-A with phospholipids in spread monolayers at the air-water interface. Biochemistry. 1995 Aug 15;34(32):10279–10289. doi: 10.1021/bi00032a023. [DOI] [PubMed] [Google Scholar]
  34. Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
  35. Venkitaraman A. R., Hall S. B., Whitsett J. A., Notter R. H. Enhancement of biophysical activity of lung surfactant extracts and phospholipid-apoprotein mixtures by surfactant protein A. Chem Phys Lipids. 1990 Dec;56(2-3):185–194. doi: 10.1016/0009-3084(90)90101-v. [DOI] [PubMed] [Google Scholar]
  36. Walker S. R., Williams M. C., Benson B. Immunocytochemical localization of the major surfactant apoproteins in type II cells, Clara cells, and alveolar macrophages of rat lung. J Histochem Cytochem. 1986 Sep;34(9):1137–1148. doi: 10.1177/34.9.2426341. [DOI] [PubMed] [Google Scholar]
  37. Williams M. C., Hawgood S., Hamilton R. L. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Am J Respir Cell Mol Biol. 1991 Jul;5(1):41–50. doi: 10.1165/ajrcmb/5.1.41. [DOI] [PubMed] [Google Scholar]
  38. Yu S., Harding P. G., Smith N., Possmayer F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids. 1983 Aug;18(8):522–529. doi: 10.1007/BF02535391. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES