Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2024–2032. doi: 10.1016/S0006-3495(00)76450-2

The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes.

M R Morrow 1, C W Grant 1
PMCID: PMC1301092  PMID: 11023906

Abstract

A peptide containing the transmembrane domain of the human EGF receptor was studied in fluid lipid bilayers for insight into receptor tyrosine kinase lateral associations in cell membranes. The peptide comprised the 23-amino acid hydrophobic segment thought to span the membrane (Ile(622) to Met(644) of the EGF receptor), plus the first 10 amino acids of the receptor's cytoplasmic domain (Arg(645) to Thr(654)). Probes for solid-state NMR spectroscopy were incorporated by deuteration of the methyl side chains of alanine at positions 623 and 637. (2)H-NMR spectra were recorded from 25 to 65 degrees C in membranes composed of 1-palmitoyl-2-oleoyl phosphatidylcholine, with and without 33% cholesterol, and relaxation times were measured. Peptide concentration ranged from 0. 5 to 10 mol %. The peptide behaved as predominant monomers undergoing rapid symmetric rotational diffusion; however, there was evidence of reversible side-to-side interaction among the hydrophobic transmembrane domains, particularly at physiological temperatures and in the presence of natural concentrations of cholesterol. The results of these experiments in fluid membranes are consistent with the existence of lipid-protein interactions that would predispose to receptor microdomain formation in membranes of higher animal cells.

Full Text

The Full Text of this article is available as a PDF (159.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy I., Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997 Jun 23;410(1):83–86. doi: 10.1016/s0014-5793(97)00412-2. [DOI] [PubMed] [Google Scholar]
  2. Davis P. J., Keough K. M. Chain arrangements in the gel state and the transition temperatures of phosphatidylcholines. Biophys J. 1985 Dec;48(6):915–918. doi: 10.1016/S0006-3495(85)83854-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gullick W. J., Srinivasan R. The type 1 growth factor receptor family: new ligands and receptors and their role in breast cancer. Breast Cancer Res Treat. 1998;52(1-3):43–53. doi: 10.1023/a:1006107016969. [DOI] [PubMed] [Google Scholar]
  4. Holowka D., Baird B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct. 1996;25:79–112. doi: 10.1146/annurev.bb.25.060196.000455. [DOI] [PubMed] [Google Scholar]
  5. Jacobson K., Sheets E. D., Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995 Jun 9;268(5216):1441–1442. doi: 10.1126/science.7770769. [DOI] [PubMed] [Google Scholar]
  6. Jones D. H., Barber K. R., VanDerLoo E. W., Grant C. W. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry. 1998 Nov 24;37(47):16780–16787. doi: 10.1021/bi981520y. [DOI] [PubMed] [Google Scholar]
  7. Jones D. H., Rigby A. C., Barber K. R., Grant C. W. Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Biochemistry. 1997 Oct 14;36(41):12616–12624. doi: 10.1021/bi970547z. [DOI] [PubMed] [Google Scholar]
  8. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Macdonald P. M., Seelig J. Dynamic properties of gramicidin A in phospholipid membranes. Biochemistry. 1988 Apr 5;27(7):2357–2364. doi: 10.1021/bi00407a017. [DOI] [PubMed] [Google Scholar]
  10. McMullen T. P., McElhaney R. N. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995 Mar 8;1234(1):90–98. doi: 10.1016/0005-2736(94)00266-r. [DOI] [PubMed] [Google Scholar]
  11. Morrow M. R., Singh D. M., Grant C. W. Glycosphingolipid headgroup orientation in fluid phospholipid/cholesterol membranes: similarity for a range of glycolipid fatty acids. Biophys J. 1995 Sep;69(3):955–964. doi: 10.1016/S0006-3495(95)79969-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
  13. Pauls K. P., MacKay A. L., Söderman O., Bloom M., Tanjea A. K., Hodges R. S. Dynamic properties of the backbone of an integral membrane polypeptide measured by 2H-NMR. Eur Biophys J. 1985;12(1):1–11. doi: 10.1007/BF00254089. [DOI] [PubMed] [Google Scholar]
  14. Prosser R. S., Daleman S. I., Davis J. H. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J. 1994 May;66(5):1415–1428. doi: 10.1016/S0006-3495(94)80932-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prosser R. S., Davis J. H., Dahlquist F. W., Lindorfer M. A. 2H nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer. Biochemistry. 1991 May 14;30(19):4687–4696. doi: 10.1021/bi00233a008. [DOI] [PubMed] [Google Scholar]
  16. Rice D., Oldfield E. Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A'. Biochemistry. 1979 Jul 24;18(15):3272–3279. doi: 10.1021/bi00582a012. [DOI] [PubMed] [Google Scholar]
  17. Rigby A. C., Barber K. R., Shaw G. S., Grant C. W. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Biochemistry. 1996 Sep 24;35(38):12591–12601. doi: 10.1021/bi9611063. [DOI] [PubMed] [Google Scholar]
  18. Rigby A. C., Grant C. W., Shaw G. S. Solution and solid state conformation of the human EGF receptor transmembrane region. Biochim Biophys Acta. 1998 May 28;1371(2):241–253. doi: 10.1016/s0005-2736(98)00020-0. [DOI] [PubMed] [Google Scholar]
  19. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  20. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  21. Siminovitch D. J., Ruocco M. J., Olejniczak E. T., Das Gupta S. K., Griffin R. G. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Biophys J. 1988 Sep;54(3):373–381. doi: 10.1016/S0006-3495(88)82970-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sperotto M. M., Mouritsen O. G. Mean-field and Monte Carlo simulation studies of the lateral distribution of proteins in membranes. Eur Biophys J. 1991;19(4):157–168. doi: 10.1007/BF00196342. [DOI] [PubMed] [Google Scholar]
  23. Thewalt J. L., Bloom M. Phosphatidylcholine: cholesterol phase diagrams. Biophys J. 1992 Oct;63(4):1176–1181. doi: 10.1016/S0006-3495(92)81681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Biochemistry. 1995 Feb 21;34(7):2362–2371. doi: 10.1021/bi00007a032. [DOI] [PubMed] [Google Scholar]
  25. van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES