Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2043–2055. doi: 10.1016/S0006-3495(00)76452-6

Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

R N Lewis 1, R N McElhaney 1
PMCID: PMC1301094  PMID: 11023908

Abstract

The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains.

Full Text

The Full Text of this article is available as a PDF (137.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  2. Boggs J. M. Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions. Biochem Cell Biol. 1986 Jan;64(1):50–57. doi: 10.1139/o86-008. [DOI] [PubMed] [Google Scholar]
  3. Boggs J. M. Intermolecular hydrogen bonding between lipids: influence on organization and function of lipids in membranes. Can J Biochem. 1980 Oct;58(10):755–770. doi: 10.1139/o80-107. [DOI] [PubMed] [Google Scholar]
  4. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  5. Browning J. L. Motions and interactions of phospholipid head groups at the membrane surface. 3. Dynamic properties of amine-containing head groups. Biochemistry. 1981 Dec 8;20(25):7144–7151. doi: 10.1021/bi00528a014. [DOI] [PubMed] [Google Scholar]
  6. Buckland A. G., Wilton D. C. Anionic phospholipids, interfacial binding and the regulation of cell functions. Biochim Biophys Acta. 2000 Jan 17;1483(2):199–216. doi: 10.1016/s1388-1981(99)00188-2. [DOI] [PubMed] [Google Scholar]
  7. Casal H. L., Mantsch H. H., Hauser H. Infrared and 31P-NMR studies of the interaction of Mg2+ with phosphatidylserines: effect of hydrocarbon chain unsaturation. Biochim Biophys Acta. 1989 Jul 10;982(2):228–236. doi: 10.1016/0005-2736(89)90059-x. [DOI] [PubMed] [Google Scholar]
  8. Casal H. L., Mantsch H. H., Hauser H. Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry. 1987 Jul 14;26(14):4408–4416. doi: 10.1021/bi00388a033. [DOI] [PubMed] [Google Scholar]
  9. Casal H. L., Mantsch H. H., Paltauf F., Hauser H. Infrared and 31P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines. Biochim Biophys Acta. 1987 Jun 23;919(3):275–286. doi: 10.1016/0005-2760(87)90267-0. [DOI] [PubMed] [Google Scholar]
  10. Casal H. L., Martin A., Mantsch H. H., Paltauf F., Hauser H. Infrared studies of fully hydrated unsaturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry. 1987 Nov 17;26(23):7395–7401. doi: 10.1021/bi00397a030. [DOI] [PubMed] [Google Scholar]
  11. Cevc G., Watts A., Marsh D. Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head-group hydration. Biochemistry. 1981 Aug 18;20(17):4955–4965. doi: 10.1021/bi00520a023. [DOI] [PubMed] [Google Scholar]
  12. Duñach M., Padrós E., Muga A., Arrondo J. L. Fourier-transform infrared studies on cation binding to native and modified purple membranes. Biochemistry. 1989 Oct 31;28(22):8940–8945. doi: 10.1021/bi00448a038. [DOI] [PubMed] [Google Scholar]
  13. Hauser H., Paltauf F., Shipley G. G. Structure and thermotropic behavior of phosphatidylserine bilayer membranes. Biochemistry. 1982 Mar 2;21(5):1061–1067. doi: 10.1021/bi00534a037. [DOI] [PubMed] [Google Scholar]
  14. Hauser H., Shipley G. G. Comparative structural aspects of cation binding to phosphatidylserine bilayers. Biochim Biophys Acta. 1985 Mar 14;813(2):343–346. doi: 10.1016/0005-2736(85)90251-2. [DOI] [PubMed] [Google Scholar]
  15. Hauser H., Shipley G. G. Crystallization of phosphatidylserine bilayers induced by lithium. J Biol Chem. 1981 Nov 25;256(22):11377–11380. [PubMed] [Google Scholar]
  16. Hauser H., Shipley G. G. Interactions of divalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1984 Jan 3;23(1):34–41. doi: 10.1021/bi00296a006. [DOI] [PubMed] [Google Scholar]
  17. Hauser H., Shipley G. G. Interactions of monovalent cations with phosphatidylserine bilayer membranes. Biochemistry. 1983 Apr 26;22(9):2171–2178. doi: 10.1021/bi00278a018. [DOI] [PubMed] [Google Scholar]
  18. Holloway P. W., Mantsch H. H. Infrared spectroscopic analysis of salt bridge formation between cytochrome b5 and cytochrome c. Biochemistry. 1988 Oct 18;27(21):7991–7993. doi: 10.1021/bi00421a003. [DOI] [PubMed] [Google Scholar]
  19. Hübner W., Mantsch H. H., Paltauf F., Hauser H. Conformation of phosphatidylserine in bilayers as studied by Fourier transform infrared spectroscopy. Biochemistry. 1994 Jan 11;33(1):320–326. doi: 10.1021/bi00167a042. [DOI] [PubMed] [Google Scholar]
  20. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  21. Lewis R. N., Mannock D. A., McElhaney R. N., Wong P. T., Mantsch H. H. Physical properties of glycosyldiacylglycerols: an infrared spectroscopic study of the gel-phase polymorphism of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols. Biochemistry. 1990 Sep 25;29(38):8933–8943. doi: 10.1021/bi00490a008. [DOI] [PubMed] [Google Scholar]
  22. Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Biophys J. 1993 Apr;64(4):1081–1096. doi: 10.1016/S0006-3495(93)81474-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis R. N., McElhaney R. N., Pohle W., Mantsch H. H. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J. 1994 Dec;67(6):2367–2375. doi: 10.1016/S0006-3495(94)80723-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lewis R. N., McElhaney R. N. Subgel phases of n-saturated diacylphosphatidylcholines: a Fourier-transform infrared spectroscopic study. Biochemistry. 1990 Aug 28;29(34):7946–7953. doi: 10.1021/bi00486a024. [DOI] [PubMed] [Google Scholar]
  25. Lewis R. N., Pohle W., McElhaney R. N. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Biophys J. 1996 Jun;70(6):2736–2746. doi: 10.1016/S0006-3495(96)79843-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lewis R. N., Sykes B. D., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing cis-monounsaturated acyl chain homologues of oleic acid: differential scanning calorimetric and 31P NMR spectroscopic studies. Biochemistry. 1988 Feb 9;27(3):880–887. doi: 10.1021/bi00403a007. [DOI] [PubMed] [Google Scholar]
  27. MacDonald R. C., Simon S. A., Baer E. Ionic influences on the phase transition of dipalmitoylphosphatidylserine. Biochemistry. 1976 Feb 24;15(4):885–891. doi: 10.1021/bi00649a025. [DOI] [PubMed] [Google Scholar]
  28. Macdonald P. M., Leisen J., Marassi F. M. Response of phosphatidylcholine in the gel and liquid-crystalline states to membrane surface charges. Biochemistry. 1991 Apr 9;30(14):3558–3566. doi: 10.1021/bi00228a029. [DOI] [PubMed] [Google Scholar]
  29. Mannock D. A., Lewis R. N., McElhaney R. N. Physical properties of glycosyl diacylglycerols. 1. Calorimetric studies of a homologous series of 1,2-di-O-acyl-3-O-(alpha-D-glucopyranosyl)-sn-glycerols. Biochemistry. 1990 Aug 28;29(34):7790–7799. doi: 10.1021/bi00486a003. [DOI] [PubMed] [Google Scholar]
  30. Mannock D. A., Lewis R. N., Sen A., McElhaney R. N. The physical properties of glycosyldiacylglycerols. Calorimetric studies of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols. Biochemistry. 1988 Sep 6;27(18):6852–6859. doi: 10.1021/bi00418a030. [DOI] [PubMed] [Google Scholar]
  31. Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
  32. Mattai J., Hauser H., Demel R. A., Shipley G. G. Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation. Biochemistry. 1989 Mar 7;28(5):2322–2330. doi: 10.1021/bi00431a051. [DOI] [PubMed] [Google Scholar]
  33. McLaughlin S., Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci. 1995 Jul;20(7):272–276. doi: 10.1016/s0968-0004(00)89042-8. [DOI] [PubMed] [Google Scholar]
  34. McMullen T. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):119–134. doi: 10.1016/s0005-2736(98)00214-4. [DOI] [PubMed] [Google Scholar]
  35. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  36. Roux M., Neumann J. M., Bloom M., Devaux P. F. 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur Biophys J. 1988;16(5):267–273. doi: 10.1007/BF00254062. [DOI] [PubMed] [Google Scholar]
  37. Roux M., Neumann J. M. Deuterium NMR study of head-group deuterated phosphatidylserine in pure and binary phospholipid bilayers. Interactions with monovalent cations Na+ and Li+. FEBS Lett. 1986 Apr 7;199(1):33–38. doi: 10.1016/0014-5793(86)81218-2. [DOI] [PubMed] [Google Scholar]
  38. Roux M., Neumann J. M., Hodges R. S., Devaux P. F., Bloom M. Conformational changes of phospholipid headgroups induced by a cationic integral membrane peptide as seen by deuterium magnetic resonance. Biochemistry. 1989 Mar 7;28(5):2313–2321. doi: 10.1021/bi00431a050. [DOI] [PubMed] [Google Scholar]
  39. Scherer P. G., Seelig J. Electric charge effects on phospholipid headgroups. Phosphatidylcholine in mixtures with cationic and anionic amphiphiles. Biochemistry. 1989 Sep 19;28(19):7720–7728. doi: 10.1021/bi00445a030. [DOI] [PubMed] [Google Scholar]
  40. Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta. 1978 Jul 31;515(2):105–140. doi: 10.1016/0304-4157(78)90001-1. [DOI] [PubMed] [Google Scholar]
  41. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  42. Seguin C., Lewis R. N., Mantsch H. H., McElhaney R. N. Calorimetric studies of the thermotropic phase behavior of cells, membranes and lipids from fatty acid-homogeneous Acholeplasma laidlawii B. Isr J Med Sci. 1987 May;23(5):403–407. [PubMed] [Google Scholar]
  43. Wright W. W., Laberge M., Vanderkooi J. M. Surface of cytochrome c: infrared spectroscopy of carboxyl groups. Biochemistry. 1997 Dec 2;36(48):14724–14732. doi: 10.1021/bi971559n. [DOI] [PubMed] [Google Scholar]
  44. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Biophys J. 1995 Mar;68(3):847–857. doi: 10.1016/S0006-3495(95)80261-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang Y. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the thermotropic phase behavior of the n-saturated 1,2-diacylphosphatidylglycerols. Biophys J. 1997 Feb;72(2 Pt 1):779–793. doi: 10.1016/s0006-3495(97)78712-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Dijck P. W., de Kruijff B., Verkleij A. J., van Deenen L. L., de Gier J. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim Biophys Acta. 1978 Sep 11;512(1):84–96. doi: 10.1016/0005-2736(78)90219-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES